Lecture Series 6-11
 Corporate Valuations in the Hospitality Business

$4^{\text {th }}$ Edition

Prof. Chris Droussiotis, M.B.A, C.H.E
Fairleigh Dickinson University
International School of Hospitality Management

CORPORATE VALUATIONS

CORPORATE VALUATIONS OVERVIEW

The Importance of Corporate Valuations:
The most important objective of management is to increase the value of the company. Many different constituencies are interested in shareholder value.

- Shareholders
- Employees
- Management
- Future Investors
- Future Acquirers
- Creditors (Banks, Subordinated Debt Holders, Trade Creditors)
- The Community

How do you Measure "Corporate Valuation"?

The measurement of value will change depending on the method used to evaluate a particular company - balance sheet value today, historical earnings from yesterday, or future earnings from tomorrow.

The objective of every measurement, however, remains the same

Different Measurements of Valuation

There are number of ways to value a company. These will differ in their appropriateness depending on who is interested in the valuation. These approaches include:

Net Book Value
Liquidation Value
Replacement Value
Market Value

Net Book Value

The main features, of net book value, include:

- Net book value equals the total equity shown on the balance sheet derived from total assets minus total liabilities.
- It reflects total issued equity adjusted for the effect of historical retained earnings, divided payments, and repurchase of stock.
- It is based on accounting conventions - generally accepted accounting principals (GAAP) which reflect the valuation of individual groups of assets, and, more influentially over time, the measurement of retained earnings derived from recording of individual revenues and expenses from income statement.

The main advantages and disadvantages of net book value as an analytical measurement is:

- Net book value is a historical accounting measurement, reflecting all of the weakness endemic in accrual accounting as a measurement of historical cash flows. Further, it does not measure the impact of value future cash flows.
- Net book value is nevertheless used extensively as a measurement of valuation. For example, certain types of companies are valued and analyzed by comparing market value to book value (e.g. banks and other financial institutions). This reflects the importance, which the market places on underlying value (primarily liquidation value) of the assets of the firm.
- Net book value, sometimes referred to as net worth or equity, is also an important measurement since it is the basis for most loan agreement financial covenants, and provides lenders with the requisite trigger in their agreements in the event of deterioration in book value below a certain point. For lenders, therefore, net book value is an important measurement of value.

Liquidation Value

Financial institutions such as the banks, creditors, mainly are interested in the Liquidation Value of the hotel or restaurant property. It has the following principal characteristics:

- Liquidation value can be defined in a number of settings including orderly liquidation on-site, forced liquidation on-site, orderly liquidation off-site, and forced liquidation off-site.
- Liquidation values will include, in addition to the expected proceeds of the assets themselves, the cost of selling the assets. As a result the on-site/off-site issue is very important, and will be reflected in valuations given by valuation experts.
- In coming up with such liquidation values, valuation experts will use a highly professional, comparative approach, which reflects sales of similar assets in similar locations.
- This approach is used frequently by asset-based lenders where the uncertainty or volatility of projected cash flows demands a detailed understanding of "backdoor" sources or repayment - most important the assets themselves i.e. the sale of the building.
- Lenders will also implicitly include liquidation values in lending criteria through the conservatism of advance rates against individual sets of assets (e.g. 75\% against eligible receivables, 50% against eligible inventory, or 50% against eligible PP\&E).
- For the shareholder, this valuation approach has limited benefits in maximizing potential shareholder value (unless, of course, the company is already in distress). The approach involves a discounting of book values- and is therefore even more conservative than the net book value approach - and does not reflect any future cash flows discounted back to present value today.

Replacement Value

Replacement value is exactly what it says: the amount a potential acquirer would have to pay to replace the assets at today's market prices. Though rarely used for hotel assets, it has the following characteristics:

- It is most commonly applied when valuing an entire business process or system compared to just individual assets.
- It includes not just the original cost, but also the soft costs of engineering, installation, maintenance, and add-ons.
- It will also reflect the benefits of marketing and distribution arrangements with other parts of the business.
- It is rarely used as a stand alone valuation technique, but more usually in conjunction with earnings multiples in order to derive a median price
- It is particularly pertinent for long-term sale/leaseback transactions where the lessor values assets for the purposes of determining his/her effective economic life in conjunction with his/her cash flow generating ability.
- As a result, replacement value will almost always yield a higher valuation for a firm or a business than that of either net book value or liquidation value. Bankers rarely use it unless they are participating in both the equity and debt components of a leveraged lease of existing system assets.

Market Value

Market Value has the advantage over other methods we have seen because it starts to reflect not just historical earnings, but future earnings discounted back to value today.

Many factors contribute to the market value of a hotel and restaurant and different types of buyers may use different formulas for determining the price they are willing to pay for a hotel or a restaurant property. Whatever formula one may use, almost everyone takes into account in some way other factors which may or may not be quantified, such as the specific location, the market conditions (ADR, Occupancy Rates, Restaurant Turnover Ratio and Average Check) in which the property operates, the current franchise or future franchise possibilities, age and condition, cost of renovations, the reputation of the current or past management, future hotel or restaurant development in the area, future room night and food and beverage demand generators, barriers to entry, financing options, functional obsolescence, value of the land, and more. Each of these factors must be weighed for every property and in some cases one factor may weigh more heavily than all of the others combined.

There are a lot of methods of calculating the Market Value of a hospitality corporation, depending on if the firm is privately or publicly owned. This chapter will focus on four of the methods that are used today by bankers, Wall Street analysts, Mergers and Acquisitions specialists and Private Equity Firms. These methods are:

1. Using the Stock Market
2. Using EBITDA Multiples of comparable companies
3. Using Comparative Transactions
4. Using Discount Cash Flow Method

Method \#1: Using the Stock Market

Every day from 9:30am - 4:00pm, every hour and every minute the companies that are listed on the stock market (NYSE, Nasdaq, ASE) are trading at their market value of the equity.

See a sample stock report of various hotel companies

STOCK REPORT

\#	Companies	1/24	1/31	217	2/14	$2 / 22$	2/28	317	3/14	3/21	3/28
1	Choice Hotels International ("CHH")	58.38	57.95	59.54	59.64	58.13	59.13	59.92	60.49	61.23	60.83
2	Fairmont Hotels \& Resorts. ("FHR")	31.73	31.21	30.98	30.80	30.90	32.14	33.43	33.10	32.65	32.29
3	Felcor Lodging LP ("FCH")	14.15	13.98	14.29	13.77	12.85	12.54	13.38	13.16	13.04	12.56
4	Gaylord Entertainment ("GET")	39.69	39.29	40.13	40.77	42.50	42.80	43.83	42.84	41.45	40.99
5	Hilton Hotels ("HLT")	22.29	22.25	22.16	22.10	21.04	21.06	23.26	22.65	22.36	21.92
6	Host Marriot LP ("HMT")	16.44	15.95	16.14	16.04	15.49	15.98	17.05	17.11	16.50	16.36
7	John Q. Hammons Hotels ("JQH")	20.25	20.10	23.38	23.29	22.89	22.17	21.72	22.27	22.10	21.58
8	La-Quinta Corp ("LQI")	8.85	8.68	8.91	8.84	8.60	9.25	9.14	8.95	8.85	8.51
9	Marcus Corporation ("MCS")	23.15	24.99	25.36	24.68	23.31	23.32	23.50	23.26	23.37	20.85
10	Meristar Hospitality (("MHX")	8.00	7.78	7.80	7.60	7.31	7.34	7.70	7.56	7.39	6.88
11	Marriott International ("MAR")	62.30	63.05	66.50	65.00	62.67	64.10	67.77	66.91	64.96	65.25
12	Orient Express Hotels Ltd ("OEH")	20.15	20.51	21.69	23.28	23.96	25.74	24.86	25.16	25.51	25.72
13	Starwood Hotels \& Resorts ("HOT")	56.86	57.89	60.80	59.34	56.64	57.24	59.43	57.17	58.69	58.33
14	Wyndham International ("WBR")	1.07	0.96	0.94	0.90	0.86	0.84	0.90	0.89	0.84	0.84

The price per share represents the company's market value of the equity (ownership). If you take the stock price of a publicly traded company and multiply by the shares outstanding, the result is the value of the Equity. If you add that Equity Value and the Debt from the balance sheet (last reported date) $(\mathrm{E}+\mathrm{D}=\mathrm{A})$, this results to the Enterprise Value. The Enterprise value represents what would someone pay to buy the Company. Most conventional calculations of Enterprise value look at Net Debt which is the Debt minus Cash.

$E V=M V$ of Equity + Debt- Cash

A collection of data was gathered for 7 hotel corporations including the stock price at a given date, stock outstanding and debt amounts from the last reported period. Using these data, the table below calculates the Enterprise Value for each public company:

Company	Symbol		Stock Price	Stocks Outstand ing (000)	Equity Value (000)	Debt (000)	$\begin{aligned} & \text { Cash } \\ & (000) \end{aligned}$	Enterprise Value (000)
Choice Hotels International	CHH	\$	38.59	65,700	2,535,363	199,150	50,670	2,683,843
Hilton Hotels	HLT	\$	47.36	390,400	18,489,344	6,180,000	170,000	24,499,344
Intercontinental Hotel	IHG	\$	20.87	299,000	6,240,130	1,870,000	108,650	8,001,480
Marcus Corporation	MCS	\$	19.27	30,380	585,423	241,750	12,630	814,543
Marriott International	MAR	\$	40.59	367,760	14,927,378	2,950,000	208,000	17,669,378
Orient Express Hotels Ltd	OEH	\$	64.00	42,440	2,716,160	775,940	86,810	3,405,290
Starwood Hotels \& Resorts	HOT	\$	58.99	209,810	12,376,692	3,032,000	508,000	14,900,692

For example, to find the Enterprise for Starwood Hotel \& Resorts you must multiply the Stock Price (\$58.99) times the stock outstanding (209.8 million), plus the Debt (\$3,032 million) less Cash (\$508 million):

Company	Symbol	Stock Price	Stocks Outstanding $(\mathbf{0 0 0)}$	Equity Value $\mathbf{(0 0 0)}$	Plus Debt $\mathbf{(0 0 0)}$	Less Cash $\mathbf{(0 0 0)}$	Enterprise Value $\mathbf{(0 0 0)}$
Starwood Hotels \& Resorts	HOT	$\$$	58.99	209,810	$12,376,692$	$3,032,000$	508,000

Method \#2: Using EBITDA Multiples Method

This is one of the most popular methods in the Mergers and Acquisition (M\&A) world of finance. This method is used for public (see above table) or for private companies. The ratio is used for comparison purposes. A company that is trading $28.92 x$ EBITDA (i.e. Orient Express Hotel) is seen as an expensive stock to buy compared to that of other hotel companies trading at an average multiple of 15.45 x . The reason that could be trading that high, it could be that there is a higher value gain expectation from Wall Street investors than the other hotel companies. Using the EBITDA Multiple method (method \#2), you could derive to a ratio that you could use to compare to the company's piers. To get a better mean (average) you need to adjust out the outliers (i.e Orient Express $26.92 x$ multiple). This results ot a 13.54 x average multiple. See below:

Company	Symbol		Stock Price	Stocks Outstand ing (000)	Equity Value (000)	Debt (000)	$\begin{aligned} & \text { Cash } \\ & \text { (000) } \end{aligned}$	Enterprise Value (000)
Choice Hotels International	CHH	\$	38.59	65,700	2,535,363	199,150	50,670	2,683,843
Hilton Hotels	HLT	\$	47.36	390,400	18,489,344	6,180,000	170,000	24,499,344
Intercontinental Hotel	IHG	\$	20.87	299,000	6,240,130	1,870,000	108,650	8,001,480
Marcus Corporation	MCS	\$	19.27	30,380	585,423	241,750	12,630	814,543
Marriott International	MAR	\$	40.59	367,760	14,927,378	2,950,000	208,000	17,669,378
Orient Express Hotels Ltd	OEH	\$	64.00	42,440	2,716,160	775,940	86,810	3,405,290
Starwood Hotels \& Resorts	HOT	\$	58.99	209,810	12,376,692	3,032,000	508,000	14,900,692

 EBITDA (000)	EBITDA Multiple
181,850	$14.76 x$
$1,680,000$	$14.58 x$
557,610	$14.35 x$
72,020	11.31 x
$1,190,000$	14.85 x
126,480	$26.92 x$
$1,351,000$	$11.03 x$

To calculate Starwood Hotel \& Resorts Enterprise Value using the EBITDA Multiple method (Method \#2) you use Starwood's last reported EBITDA and multiplied by the industry average:

Method \#2 - Using Average EBITDA Multiple	Average EBITDA Multiple	EBITDA (000)	Enterprise Value (000)
Starwood Hotels \& Resorts	13.48 x	$1,351,000$	$\mathbf{1 8 , 2 1 1 , 1 7 4}$

A well known valuation method on Wall Street is PE multiple method. It uses a company's price-earnings (P-E) ratio to capitalize earnings. For example, if a company in the Hotel industry sells typically at 25 x earnings, and earnings per share are now $\$ 1$, the accounting model will provide a $\$ 25$ share price, thus:

Share Price	$=$	EPS	x	P-E Ratio
$\$ 25$	$=$	$\$ 1$	x	25

Please note the EPS could be calculated by Dividing Net Income by Stocks outstanding.

The table below shows the EBITDA Multiples for the Restaurant Industry:

RESTAURANT COMPANIES

Calculations			SP	SO	SP * SO = EQ	D		$E Q+$ = EV	E	EV/E	
Company	Symbol		$\begin{aligned} & \text { Stock } \\ & \text { Price } \end{aligned}$	Stocks Outstand ing (000)	Equity Value (000)	Debt (000)	$\begin{aligned} & \text { Cash } \\ & (000) \end{aligned}$	Enterprise Value (000)	$\begin{aligned} & \text { EBITDA } \\ & (000) \\ & \hline \end{aligned}$	EBITDA Multiple	Beta
Applebee's Intl, Inc.	APPB	\$	25.21	74,950	1,889,490	144,670	7,960	2,026,200	205,760	9.85x	1.63x
BJ's Restaurant Inc	BJRI	\$	18.99	26,100	495,639	-	64,100	431,539	25,860	16.69x	0.17x
Brinker Intl (Chili's, Romano's	EAT	\$	27.03	105,150	2,842,205	828,680	85,240	3,585,645	524,030	6.84x	1.19x
Darden Rest. (Red Lobster, Olive Garden)	DRI	\$	43.28	141,890	6,140,999	67,050	47,300	6,160,749	786,300	7.84x	0.79x
Starbucks Corp.	SBUX	\$	26.07	732,110	19,086,108	882,100	330,020	19,638,188	1,380,000	14.23x	1.20x
Texas Roadhouse	TXRH	\$	11.40	74,750	915,920	79,930	57,790	938,060	86,260	10.87x	1.18x
Yum Brands (Pizza Hut, KFC)	YUM	\$	37.95	508,610	19,301,750	2,420,000	507,000	21,214,750	1,840,000	11.53x	1.42 x
									Average	10.26x	1.16x

The table below shows the EBITDA Multiples for the Casino Industry:

CASINO COMPANIES

Calculations		SP	SO	SP * SO = EQ	D		EQ + D = EV	E	EV/E	
Company	Symbol	Stock Price	Stocks Outstand ing (000)	Equity Value (000)	Debt (000)	Cash	Enterprise Value (000)	$\begin{aligned} & \text { EBITDA } \\ & (000) \end{aligned}$	EBITDA Multiple	Beta
Pinnacle Entert.	PNK	27.18	59,770	1,624,549	791,240	413,390	2,002,399	124,510	16.08x	1.95 x
MGM Mirage	MGM	91.73	284,340	26,082,508	13,560,000	294,610	39,347,898	2,140,000	18.39x	2.61 x
Harrah's Entert.	HET	88.40	187,240	16,552,016	12,200,000	721,000	28,031,016	2,480,000	11.30x	$1.77 \times$
Las Vegas Sands	LvS	\$ 133.65	354,870	47,428,376	7,110,000	1,790,000	52,748,376	656,780	80.31x	2.58x
Station Casinos	STN	89.85	57,260	5,144,811	3,430,000	105,150	8,469,661	505,510	16.75x	0.67 x
Boyd Gaming	BYD	40.40	87,710	3,543,484	2,140,000	169,400	5,514,084	642,910	8.58x	1.92x
						Average			29.24x	1.74x
							Average (less outlier)		15.63x	

Method \#3: Using Comparative Transactions

This method is probably the most effective method. When valuing a specific company, you have better understanding of the current value if any of its competitors/piers that are in the same business have been bought/sold. The acquisition price for these transactions could be used as a benchmark for valuing the specific company. In the residential market, Real Estate Brokers or Mortgage Companies use this method of valuing the property.

HOTEL COMPARABLES														
Calculations				AP	so		AP * SO = EQ		D		+ D = EV		E	EV/E
Date Anouncement	Target	Acquirer	Acquisition Price IShare		Shares Outstanding	Equity Value (\$mm)		Total Debt (\$mm)		Enterpised Value (EV)		$\begin{array}{\|c\|} \hline \text { EBITDA (last } \\ \text { reported) } \end{array}$		EBITDA Multiple
7/4/2007	Hilton Hotels	Blackstone Group	\$	47.50	390,400,000	\$	18,544.00	\$	6,180.00	\$	24,724.00	\$	1,680.00	14.72x
11/6/2006	Four Seasons*	Kingtom Hotels Int'I/ Gates' Cascade Invstments	\$	82.00	33,078,000	\$	3,300.00	\$	278.68	\$	3,578.68	\$	112.18	31.90x
5/11/2006	Fairmont/Rafles	Kingtom Hotels Int'l	\$	45.00	73,333,333	\$	3,300.00	\$	123.50	\$	3,423.50	\$	187.20	18.29x
1/10/2006	Hilton International	Hilton Hotels Corp.				\$	5,578.00	\$	-	\$	5,578.00	\$	504.00	11.07x
11/14/2005	Starwood Hotels	Host Marriott								\$	4,096.00	\$	315.08	13.00x
10/24/2005	La-Quinta Corp		\$	12.22	203	\$	2,474.00	\$	925.71	\$	3,400.00	\$	229.70	14.80x
8/16/2005	Wynham Int'l	Blackstone Group	\$	1.15	172,053,000	\$	197.86	\$	2,681.96	\$	2,879.82	\$	275.18	10.47x
8/8/2005	John Q. Hammons Hotels	JQH Acquisition LLC	\$	24.00	19,583	\$	470.00	\$	765.20	\$	1,235.00	\$	123.07	10.00x
07/22/2005	Societe du Louvre	Starwood Capital								\$	1,028.90	\$	91.05	11.30 x
3/10/2005	Intercontinental Hotels	LRG								\$	981.00	\$	106.63	9.20 x
12/10/2004	Boca Resorts	Blackstone Group	\$	24.00	40,284,000	\$	966.82	\$	217.29	\$	1,184.11	\$	90.07	13.15x
8/18/2004	Prime Hospitality	Blackstone Group	\$	12.25	44,808,000	\$	548.90	\$	243.60	\$	792.50	\$	55.12	14.38x
3/8/2004	Extended Stay	Blackstone Group	\$	19.93	95,077,000	\$	1,894.88	\$	1,231.50	\$	3,126.38	\$	224.85	13.90x
${ }^{*}$ Four Seasons' $\$ 112.18$ million represents 2007 EBITDA (2005 EBITDA was $\$ 11.4$ negative)														
AverageAverage (adjusting out the outliers)														14.32x
														13.19x

Other methods of calculating comparative valuations include per square foot, per room, etc. See below for single property purchases:

HOTEL COMPARABLES (using other methods)

Date Anouncement	Target	Acquirer	Acquisition Price/ Room	Number of Rooms	\qquad		Total Debt (\$mm)	Enterpised Value (EV)		Per Room Analysis Per Room Analysis - Luxury
9/14/2005	Hyatt Regency-DC	Host Marriott	\$ 328,537.17	834	\$	274.00	Incl.	\$	274.00	
9/9/2005	Paris Intercontinental	GIC RE (Singapore)	\$ 863,013.70	438	\$	378.00	Incl.	\$	378.00	
8/26/2005	Century Plaza, CA **	Hyatt / Sunstone	\$ 432,692.31	728	\$	315.00	Incl.	\$	315.00	
4/14/2005	The Plaza Hotel-NY*	Elad Properties LLC	\$ 838,509.32	805	\$	675.00	Incl.	\$	675.00	Per Room Analysis - Luxury
11/12/2003	Hyatt Regency-Maui	Blackstone Group	\$ 398,000.00	806	\$	320.79	Incl.	\$	320.79	Per Room Analysis
9/29/2003	Marriot Grosvenor Square London	Blackstone Group	\$ 354,000.00	221	\$	78.23	Incl.	\$	78.23	Per Room Analysis
	Average Per Room Taking out the outlier (Paris	Interc. \& NY Plaza)	$\begin{aligned} & \$ 535,792.08 \\ & \$ 360,179.06 \end{aligned}$							

* The Plaza Hotel Investment Strategy:

The 805 -room Midtown hotel with views of Central Park will shut its doors April 30 and reopen late next year with about 350 hotel rooms, 200 condominiums and new retail space
*** Centrury Plaza Hotel \& Spa Investment Strategy:
Purchase price $\$ 293$ million ($\$ 402,472$ per rooom) $+\$ 22$ million renovation for total investment $\$ 315$ million ($\$ 432,692$ per room) - rename to Hyatt Regency Plaza

Major investment banking firms use the Method \#3 to calculate enterprise values. The exhibit below shows recent list of acquisitions in the Casino market:

GAMING COMPARABLES														
Calculations			AP		so	AP*SO = EQ		Ca		$\mathrm{EQ}+\mathrm{D}+\mathrm{Ca}=$ 目		E	EV/E	
Date Anouncement	Target	Acquirer	Acquisition Price IShare		Shares Outstanding	Equity Value($\$ \mathrm{~mm}$)		$\begin{array}{r} \text { Cash } \\ (\$ \mathrm{~mm}) \\ \hline \end{array}$		Total Debt (\$mm)		Enterpised Value (EV)	EBITDA (last reported)	EBITDA Multiple
3/15/2007	Harrah's	Texas Pacific Group/Apollo	\$	90.00	187,240,000	\$	16,851.60	\$	721.00	\$	12,200.00	\$ 28,330.60	\$ 2,480.00	11.42x
6/20/2005	Argosy Baton Rouge	Columbia Sussex										\$ 150.00	\$ 20.27	7.40x
5/11/2005	Reno Hilton (Ceasars)	Grand Siera Resort										\$ 150.00	\$ 11.03	13.60x
3/23/2005	MotorCity (Mandalay)	Marion										\$ 525.00	\$ 67.31	7.80x
02/04/2005	Golden Nuggett	Landry's										\$ 295.00	\$ 22.69	13.00x
11/03/2004	Argosy Gaming	Penn National										\$ 2,200.00	\$ 258.82	8.50x
10/25/2004	Mandalay Resort	MGM Mirage	\$	68.00	71,323,529	\$	4,850.00	\$	-	\$	2,800.00	\$ 7,650.00	\$ 584.79	13.08x
07/15/2004	Caesars	Harrah's	\$	61.27	55,300	\$	3,388.00	\$	1,792.00	\$	4,260.00	\$ 9,440.00	\$ 1,180.00	8.00x

Major investment banking firms use the Method \#3 to calculate enterprise values. The exhibit below shows recent list of acquisitions in the Restaurant market:

RESTAURANT COMPARABLES

Examples of other comparable transactions in the wine industry that was gathered by Constellation Brands, a large Beverage Manufacturer is as follows:

Recent acquisitions				
Date	Target	Acquired	Purchase Price	Adjusted EBITDA Multiple
April 2003	BRL Hardy Limited	Acquired all the outstanding capital stock	\$1,444.5	10.1x
July 2001	Ravenswood Winery, Inc	Acquired all the outstanding capital stock	\$152.5	12.3x
March 2001	Corus Assets	Acquired certain wine brands, wineries, working capital and other related assets	\$52.3 ${ }^{1}$	9.5 x
March 2001	Turner Road Vinters Assets	Acquired several well-known premium wine brands, including Vendange, Nathanson Creok, Heritage and Talus, working capital, two wineries in California and other related assets	\$289.8	9.1 x
June 1999	Franciscan Estates	Acquired all the outstanding capital stock. In related transactions, vineyards, equipment and other vineyard related assets were also purchased	\$243.2	12.2x
June 1999	Simi	Acquired all the outstanding capital stock	\$57.5	11.5x
April 1999	Black Velvet Assets	Acquired several whisky brands, production facilities, inventories and other related assets	\$183.6	5.2x

To Calculate Starwood Hotel \& Resort's Enterprise Value using the Comparative Analysis method (Method\#3) you use Starwood's last reported EBITDA times the Average Comparable EBITDA Multiple:

HOTEL COMPARABLES														
Calculations				AP	so		P * SO = EQ		D	EQ	+ D $=\mathrm{EV}$		E	EV/E
Date Anouncement	Target	Acquirer	Acquisition Price IShare		Shares Outstanding	\qquad		\qquad		Enterpised Value (EV)		$\begin{array}{\|c\|} \hline \text { EBITDA (last } \\ \text { reported) } \end{array}$		$\begin{aligned} & \text { EBITDA } \\ & \text { Multiple } \\ & \hline \end{aligned}$
7/4/2007	Hilton Hotels	Blackstone Group	\$	47.50	390,400,000	\$	18,544.00	\$	6,180.00	\$	24,724.00	\$	1,680.00	14.72x
11/6/2006	Four Seasons*	Kingtom Hotels Int'I/ Gates' Cascade Invstments	\$	82.00	33,078,000	\$	3,300.00	\$	278.68	\$	3,578.68	\$	112.18	31.90x
5/11/2006	Fairmont/Rafles	Kingtom Hotels Int'I	\$	45.00	73,333,333	\$	3,300.00	\$	123.50	\$	3,423.50	\$	187.20	18.29x
1/10/2006	Hilton International	Hilton Hotels Corp.				\$	5,578.00	\$	-	\$	5,578.00	\$	504.00	11.07x
11/14/2005	Starwood Hotels	Host Marriott								\$	4,096.00	\$	315.08	13.00x
10/24/2005	La-Quinta Corp		\$	12.22	203	\$	2,474.00	\$	925.71	\$	3,400.00	\$	229.70	14.80x
8/16/2005	Wynham Int'	Blackstone Group	\$	1.15	172,053,000	\$	197.86	\$	2,681.96	\$	2,879.82	\$	275.18	10.47x
8/8/2005	John Q. Hammons Hotels	JQH Acquisition LLC	\$	24.00	19,583	\$	470.00	\$	765.20	\$	1,235.00	\$	123.07	10.00x
07/22/2005	Societe du Louvre	Starwood Capital								\$	1,028.90	\$	91.05	11.30x
3/10/2005	Intercontinental Hotels	LRG								\$	981.00	\$	106.63	9.20 x
12/10/2004	Boca Resorts	Blackstone Group	\$	24.00	40,284,000	\$	966.82	\$	217.29	\$	1,184.11	\$	90.07	13.15x
8/18/2004	Prime Hospitality	Blackstone Group	\$	12.25	44,808,000	\$	548.90	\$	243.60	\$	792.50	\$	55.12	14.38x
3/8/2004	Extended Stay	Blackstone Group	\$	19.93	95,077,000	\$	1,894.88	\$	1,231.50	\$	3,126.38	\$	224.85	13.90x
** Four Seasons' \$112.18 milion represents 2007 EBITDA (2005 EBITDA was \$11.4 negative)														
Average														14.32x
Average (adjusting out the outliers)														13.19x
Method \#2 - Using Average Comparable Transaction - EBITDA Multiple					Average EBITDA Multiple		$\begin{aligned} & \text { EBITDA } \\ & (000) \end{aligned}$				Enterprise Value (000)			
Starwood Hotels \& Resorts					13.19x		1,351,000				17,816,716			

Method \#4: Discount Cash Flow (DCF) Method

This method is used to measure the value of the company based on the company's future cash flows. We will use this method to calculate the Enterprise Value for both private company (Alexandria Hotel Property) and public company (Starwood).

The projections to calculate DCF are often built from the top down using various assumptions. To calculate DCF you need four factors:

1. The stream of Future Cash Flow
2. The Exit Year (usually 5-7 years)
3. The Terminal Value
4. Discount Rate

1. Stream of Future Cash Flows:

See at both public and private company examples we need to calculate the bottom line stream of future cash flows. The results are based on Revenue and Expense assumptions.

2. The Exit Year

Every investor chooses an exit year or the end of his/her investment. The DCD model needs this info in order to estimate the Present Value of the Enterprise for both public and private companies, as well as to calculate the realized return on the investor's initial capital for the private company. Most investors use years 5-7 as Exit years.

3. The Terminal Value

At the Exit year, the investor assumes a value that the company will be sold at that date in the future based various methods similar to the method we described above. This value is called Terminal Value. The two most popular are (though you could use all four of the above):

- EBITDA Multiple (using future EBITDA (Exit Year) and multiply by the current industry average) to calculate the Enterprise Value.
- Perpetuity Method: Exit Year Cash Flow divided by the Discount Rate

4. Discount Rate

Most often the Discount Rate used for primarily private companies is the Weighted Average Cost of Capital (WACC). The cost of a company's capital is the combined cost of its debt and equity - an important guideline because it is the rate, which helps management decide whether or not to invest in either a project, piece of equipment, or acquisition. If such a project, piece of equipment, or acquisition can generate cash flows, which result in returns, which exceed the cost of the firm's capital, then an investment is attractive. If it does not produce a rate of return equal to the firm's cost of capital, then it should be rejected.

The cost of Capital is the combined cost of both debt and equity. However, these components represent different portions of the capital structure of the balance sheet, and enjoy different treatment. Debt, for example, enjoys the benefit of a tax deduction on the interest that is paid. No such benefit for the company when returning capital or paying dividends - to the equity holders.

Consequently, in computing the cost of capital, we have to "weigh", or blend the respective components of debt and equity in order to derive the Weighted Average

Cost of Capital - see below calculation of Alexandria's WACC:
Once we have computed costs of individual components of the capital structure, we may weigh them according to some standard and calculate a weight-average cost of capital.

Transaction Sources \& Uses

Sources:	Amount	\% Capital	Expected Return	WACC	EBITDA Multiple
Bank Loan	60,000,000	57.7\%	5.00\%	2.885\%	3.0x
Corporate Bonds	24,000,000	23.1\%	10.00\%	2.308\%	1.2x
Equity	20,000,000	19.2\%	18.10\%	3.482\%	1.0x
Total Sources	104,000,000	100.0\%		8.674\%	5.1x
Uses:					
Cost of Property (Land\&Build)	100,000,000				
Furniture and Equipment	4,000,000				
Fees					
Total Uses	104,000,000				

In determining WACC, we calculate the Company's ability to raise equity (i.e. 25%), and it costs to borrow debt.

The aforementioned WACC is calculated at $10.0 \% \%$. This rate will be used as the expected rate on any corporate valuations to determine the present value of the firm. In other words, the blended cost of capital (borrowing and investing) is priced at 10.0%.

Cost of Equity:

The example uses a simple way of calculating the Cost of Equity, which at a 25% fixed-rate could represent the expected return of an individual investor.

An expanded version of calculating the right Cost of Equity is to factor few market parameters. Whether the investor is buying a hotel corporation, a utility company or a telecom company, the expected return (or Cost of Equity) will vary based on the risk volatility of the each industry. Another important factor is whether the company you
are purchasing is large or small cap (cap is referred to the capitalization amount which in the case of Alexandria is $\$ 104$ million.

For Calculating Cost of Equity you need the following data:

1. Alpha (Riskless Rate) (" α ")
2. Beta (Stock market volatility based on Industry) (" β ")
3. Equity Premium (Based on Market Cap) ("Ep")

The formula for calculating the Cost of Equity is:

$\alpha+\beta *(\mathbf{E p})$

Alpha (" $\alpha "$)
Alpha is the riskless rate or the guarantee investment rate on investing one's money, such as government bonds or AAA rated instruments. The example below used the 10 -year Treasury Rate of 4.75%, which is the rate the US Government guarantees as long as one keeps his/her investment locked for 10 years.

Beta (" β ")

The Beta measures the volatility of the stock. The Beta is the Standard Deviation of the movement of the specific stock against the stock market. For example, the stock price of a company with a 1.0 x Beta moves along the same trajectory as does the market. However, the stock price of a company with 1.2 x Beta is more volatile than the market and is said to have higher risk. The Beta for hotels or restaurants used is the average of the underlying stocks within the industry:

Equity Premium ("Ep")

Over the last 75 years, all the Equity Premiums were calculated for the stock market based on market capitalization. See table below.

Calculating Equity Expected Return			
Alpha (Risk Less Rate)	Beta (Industry Volatility)	Equity Premium (Hist. Table)	Equity Expected Return
4.75\%	1.208571429	11.05\%	18.10\%
Given	Given		

from Table -
Method\#2

COST OF EQUITY CALCULATION

Equity Risk Premiums (1926-2001) Decile Mkt Cap \$MM		
1	Risk Prem.	
2	524,351	7.03%
3	10,344	8.05%
4	4,144	8.47%
5	2,177	8.75%
6	1,328	9.03%
7	840	9.18%
8	538	9.58%
9	333	9.91%
10	193	10.43%

Valuing Private Companies using the Discount Cash Flow Method:

Alexandria Hotel Company
 Transaction Sources \& Uses

```
Sources:
5 Bank Loan
6 Corporate Bonds
Equity
    Total Sources
Uses:
    Cost of Property (Land&Build)
    Furniture and Equipment
    Fees
    Total Uses
Bank Loan Information
Amount
Interest Rate
Maturity
Term (Years)
Amount Outstanding
Interest Payment
Schedule Payments
Total Financing Payment
Corporate Bond Information
Amount
Interest Rate
Maturity
Term (Years)
Amount Outstanding
Interest rate
Schedule Payments
    Total Financing Payment
Total Financing
Total Debt Outstanding
```

Amount	\% Capital	Expected Return	WACC	EBITDA Multiple
60,000,000	57.7\%	5.00\%	2.885\%	3.0x
24,000,000	23.1\%	10.00\%	2.308\%	1.2x
20,000,000	19.2\%	18.10\%	3.482\%	$1.0 x$
104,000,000	100.0\%		8.674\%	5.1x
$\begin{array}{r} 100,000,000 \\ 4000000 \end{array}$				
104,000,000				

						Exit Year	
	2008	2009	2010	2011	2012	2013	2014
$\begin{gathered} 60,000,000 \\ 5.00 \% \\ 2014 \\ 7 \end{gathered}$							
60,000,000	$\begin{gathered} 60,000,000 \\ 3,000,000 \\ - \\ \hline \end{gathered}$	$\begin{array}{r} 56,000,000 \\ 3,000,000 \\ 4,000,000 \\ \hline \end{array}$	$\begin{array}{r} 50,000,000 \\ 2,800,000 \\ 6,000,000 \\ \hline \end{array}$	$\begin{array}{r} 42,000,000 \\ 2,500,000 \\ 8,000,000 \\ \hline \end{array}$	$\begin{array}{r} 34,000,000 \\ 2,100,000 \\ 8,000,000 \\ \hline \end{array}$	$\begin{array}{r} 24,000,000 \\ 1,700,000 \\ 10,000,000 \\ \hline \end{array}$	$\begin{array}{r} 1,200,000 \\ 24,000,000 \\ \hline \end{array}$
	3,000,000	7,000,000	8,800,000	10,500,000	10,100,000	11,700,000	25,200,000
$\begin{aligned} & 24,000,000 \\ & 10.00 \% \\ & 2017 \\ & 10 \end{aligned}$							
24,000,000	$\begin{array}{r} 24,000,000 \\ 2,400,000 \end{array}$						
	2,400,000	2,400,000	2,400,000	2,400,000	2,400,000	2,400,000	2,400,000
	$\begin{array}{r} 5,400,000 \\ 84,000,000 \end{array}$	$9,400,000$ $80,000,000$	$11,200,000$ $74,000,000$	$12,900,000$ $66,000,000$	$12,500,000$ $58,000,000$	$\begin{aligned} & 14,100,000 \\ & 48,000,000 \end{aligned}$	$\begin{aligned} & 27,600,000 \\ & 24,000,000 \end{aligned}$

Exhibit I.

Initial Transaction Structure / Debt Capacity

In structuring a transaction (purchase of a hotel or building one), the maximum Bank Debt raised is based on two factors: a) Valuation (Appraisal of the property, Corporate Valuation); and b) the Cash Flows of the Company as of last reported and/or projected going forward. The Maximum Bank Debt raised, often call Bank Debt Capacity, for the example above (Ithaca) - see exhibit I - shows that $\$ 60$ million is all the bank could give given the Ithaca's EBITDA. The Ratio of Debt to EBITDA as exhibited above is 2.7 x . The rule of thumb (depending on the market), the Senior Debt to EBITDA ratio will not exceed 3.0x. The rule of thumb for Total Debt to EBITDA ratio is often less than 5.5 x for hotel transactions. The above ratio is well under that ratio calculated at $3.8 x([\$ 60 \mathrm{~mm}+\$ 25 \mathrm{~mm}] / \$ 21.8)$.

Projections:

As main part of the DCF valuation process, as stated above, includes 5-10 years of cash flow projections. The cash flow projections are built on revenue and expense assumptions based industry averages or historical information (Exhibit II).

METHOD \#4 - Discount Cash Flow Valuation Analysis

Investment Cash Flow Assumptions
Revenue Assumptions
Average Daily Rate (ADR)
Available Rooms
Assumed Occupancy Rate (OR)
Price Increase
Available Rooms per Year
REVPAR (OR*ADR)
Total Rooms Revenues Room Revenue Growth
Operating Expense Assumptions \% as of Revenue Operating Expenses
Plus Depreciation
Less Working Capital
Less Capital Expenditures
Free Cash Flow before financing
Financing Expenses
Interest
Principal Payments
Net Cash Flow

Exhibit II

Calculating the Equity Cash Flows of a Private Company:

The bottom line cash flow projections that the equity would be receiving while the hotel is operating over the next 6 years plus the assumed selling price of the hotel would be discounted back - using WACC as a discount rate - to calculate the present value of the equity, as well as the Enterprise Value of the hotel - see below Exhibit III for calculations.

Exhibit III

Using Method \#4 to calculate the EV for Public Companies

The methodology for valuing public hotel companies is slightly different from valuing private companies using the Discount Cash Flow Method (Method \#4). The difference is that valuing public companies does not require the use of initial assumptions as does the private company, such as WACC and equity investment. The valuation analysis is based your own operating assumptions going forward (Revenue Growth, Expenses as percentage of Revenues, Tax Rates, Capital Expenditures and Discount Rate used for calculating Enterprise value).

For example (see below), the projected operating results are based on actual data reported by the Company. As you input the 2005 data for Starwood you make few assumptions such as Revenue Growth (i.e 10.0%), Cost of Revenues and Operating Expenses as percentage of Revenues, Depreciation and Capital Expenditures as percentage of Revenues and the Debt Levels used are the levels reported in 2005 for the calculation of Terminal Value and Present Value of the Enterprise.

Conclusion:

As you could see from the table below, the Enterprise Values for Starwood yield different results than from the various methods. These methods are only used for reference points before the investor decides to bid for Starwood. Even though Starwood's stock is trading at a $\$ 12.4$ billion enterprise value (method \#1) or $\$ 58.99$, few similar companies were bought at multiples above Starwood's trading levels that put Starwood's Enterprise Value at $\$ 17.8$ billion or $\$ 72.89$ (Method \#3). The DCF method (Method \#4) also shows that the Present Value (EV) of the future cash flows would be $\$ 16.5$ billion or $\$ 66.84$, if Starwood's operating results were to grow on an average of 5% per year, which is lower than the current stock price as Wall Street investors are expecting a higher than 5% growth.

	Enterprise Value (\$millions)	Less Current Debt (\$millions)	Plus Current Cash (\$millions)	Equity Value (\$millions)	Stocks Outstanding (millions)	Stock Price
Method \#1 - Current Value	$14,900.69$	$3,032.00$	508.00	$12,376.69$	209.810	$\$$
					58.99	
Method \#2	$18,211.17$	$3,032.00$	508.00	$15,687.17$	209.810	$\$$
Method \#3	$17,816.72$	$3,032.00$	508.00	$15,292.72$	209.810	$\$$
Method \#4	$16,547.55$	$3,032.00$	508.00	$14,023.55$	209.810	$\$$

Average (Other Methods) $\quad \mathbf{1 6 , 8 6 9 . 0 3}$
\$ 71.50

The table above demonstrates that the average of Methods \#2, \#3 and \#4, the stock price is calculated higher than the current value, thus, we say that Starwood's current stock level is undervalued ($\$ 58.99$ vs. $\$ 71.50$).

OTHER MARKET VALUE METHODS USED IN THE HOSPITALITY INDUSTRY

Gross Room Revenue Multiplier

This is a popular formula for buyers of motels and hotels generally under $\$ 7,000,000$. Varies from region to region. The range of gross room revenue multiplier from less than 2 times the gross room revenue to over 5 times the gross room revenue makes using the national or regional average multiplier a very imprecise measure of value. If used, it should be considered as one of a number of measures of value. Best used for owner operator limited service properties.

Capitalization Rate

$\mathrm{R}=\mathrm{I} / \mathrm{V}$ or Rate $=$ Income (usually accepted as the Net Operating Income) divided by the Value; or to determine Value (V) = Income (I or NOI) divided by Rate. A good measure of value for a consistently performing investment property, which the purchaser plans to maintain in the same manner Price Per Room. This is both a cost of replacement comparison and a sales comparable approach. If a new hotel or motel with the same construction and amenities would cost $\$ 45,000$./room and one can purchase an existing property for $\$ 25,000 . /$ room plus a renovation cost of $\$ 5,000 . /$ room and end up with a motel almost equivalent to a new property, the savings of $\$ 15,000$./room makes the existing property more attractive. Knowing the price per room at which similar hotels or motels in the same or similar market have sold, one can judge the current properties offered for sale. As markets change over time, this is accurate only if the comparables are recent and similar.

VALUATION METHODS ON PROJECT INVESTMENT DECISIONS

Capital Budgeting Decisions

Making the Capital Expense based on project valuations.

The net present value of a project can be represented as:
NPV (project) $=\mathrm{PV}$ (with project) -PV (without project)

Let's consider an example of this type of calculation.

Example

A large hotel corporation that controls more than 200 hotel properties nationwide is considering improving its computer network for cost efficiencies. The corporation currently has a computer, which can be upgraded at a cost of $\$ 200,000$. The upgraded computer will be useful for 5 years and will provide cost savings of $\$ 75,000$ per year. The current market value of the computer is $\$ 100,000$. The cost of capital is 15%. Should the computer be upgraded?

Solution

The alternatives available to the corporation are: (1) do not upgrade the computer or (2) upgrade the computer. The NPV of upgrading is:

$$
N P V=-200,000+\sum_{t=1}^{5} \frac{75,000}{(1.15)^{t}}=\$ 51,410
$$

The net present value is positive. This means that the corporation should go ahead with acquisition. Notice that the market value of the computer is not included. It is irrelevant for the upgrading decision. Further note that a number of simplifying assumptions have been made such as a constant discount rate and zero tax rate. Let's be more precise about the capital budgeting decision. First, we need to introduce some notation.
$R_{-} t=\$$ cash revenue in time t
$E_{-} t=\$$ cash expenses in time t
$T A X _t=\$$ taxes in time t
$D _t=\$$ depreciation in time t
$T=\$$ average and marginal tax rate
$I _t=\$$ Investment in time t
$S_{-} t=\$$ Salvage value in time t
The net cash flow in period t is:

$$
\text { X_t= R_t - E_t }- \text { TAX_t - I_t }+ \text { S_t }^{\prime}
$$

Taxes are defined to be:

$$
\text { Tax_t }=T \times\left(R _t-E _t-D _t\right)
$$

Substituting the expression for taxes into the first equation yields:

$$
\text { X_t }=(1-T) \times\left(R _t-E _t\right)+\left(T \times D _t\right)-I _t+S _t
$$

Note that we are making a number of simplifying assumptions about the taxation. In a real world application, one would want to consider (1) carry forward and carry back rules, (2) investment tax credits, (3) sufficiency of taxable income, and (4) special tax circumstances (e.g. mining and petroleum).

USING THE PRESENT VALUE TABLES

Present Value of \$1 to Be Paid in the Future

This table shows how much $\$ 1$, to be paid at the end of various periods in the future, is currently worth, with interest at different rates, compounded annually.

To use the table, find the vertical column under your interest rate (or cost of capital). Then find the horizontal row corresponding to the number of years it will take to receive the payment. The point at which the column and the row intersect is your present value of $\$ 1$. You can multiply this value by the number of dollars you expect to receive, in order to find the present value of the amount you expect.

Example: As an example of how the table can be used to compute the net present value of a major project, consider the following:

Agonas Hotel Corporation is considering expanding its property by building a new wing that will include additional rooms. After all the factors are considered (including initial costs, tax savings from depreciation, revenue from additional sales, and taxes on additional revenues)- this case would be $\$ 10$ million. Agonas projects the following cash flows from the new added rooms:

Year 1: $(\$ 10,000,000)$
Year 2: \$ 3,000,000
Year 3: \$ 3,500,000
Year 4: \$ 3,500,000
Year 5: \$ 3,000,000
Assume that Agona's cost of capital is 9\%, using the net present value table shows whether the new added rooms would at least cover its financial costs:

| Year | Cash Flow
 $(\$ 10,000,000) \mathrm{x}$ | Table Factor
 1 | $1.000000=$ |
| :---: | :---: | :---: | :---: |\quad| Present Value |
| :---: |
| $(\$ 10,000,000)$ |
| 2 |

Since the net present value of the cash flow is positive, the expansion of the existing building would be at least slightly profitable for Agonas.

Present Value of $\mathbf{\$ 1}$ to be paid in Future

Years	$\mathbf{3 . 0 \%}$	$\mathbf{3 . 5 \%}$	$\mathbf{4 . 0 \%}$	$\mathbf{4 . 5 \%}$
1	$\$ 0.970874$	$\$ 0.966184$	$\$ 0.961538$	$\$ 0.956938$
2	$\$ 0.942596$	$\$ 0.933511$	$\$ 0.924556$	$\$ 0.915730$
3	$\$ 0.915142$	$\$ 0.901943$	$\$ 0.888996$	$\$ 0.876297$
4	$\$ 0.888487$	$\$ 0.871442$	$\$ 0.854804$	$\$ 0.838561$
5	$\$ 0.862609$	$\$ 0.841973$	$\$ 0.821927$	$\$ 0.802451$
6	$\$ 0.837484$	$\$ 0.813501$	$\$ 0.790315$	$\$ 0.767896$
7	$\$ 0.813092$	$\$ 0.785991$	$\$ 0.759918$	$\$ 0.734828$
8	$\$ 0.789409$	$\$ 0.759412$	$\$ 0.730690$	$\$ 0.703185$
9	$\$ 0.766417$	$\$ 0.733731$	$\$ 0.702587$	$\$ 0.672904$
10	$\$ 0.744094$	$\$ 0.708919$	$\$ 0.675564$	$\$ 0.643928$
11	$\$ 0.722421$	$\$ 0.684946$	$\$ 0.649581$	$\$ 0.616199$
12	$\$ 0.701380$	$\$ 0.661783$	$\$ 0.624597$	$\$ 0.589664$
13	$\$ 0.680951$	$\$ 0.639404$	$\$ 0.600574$	$\$ 0.564272$
14	$\$ 0.661118$	$\$ 0.617782$	$\$ 0.577475$	$\$ 0.539973$
15	$\$ 0.641862$	$\$ 0.596891$	$\$ 0.555265$	$\$ 0.516720$

Years	$\mathbf{5 . 0 \%}$	$\mathbf{5 . 5 \%}$	$\mathbf{6 . 0 \%}$	$\mathbf{6 . 5 \%}$
1	$\$ 0.952381$	$\$ 0.947867$	$\$ 0.943396$	$\$ 0.938967$
2	$\$ 0.907029$	$\$ 0.898452$	$\$ 0.889996$	$\$ 0.881659$
3	$\$ 0.863838$	$\$ 0.851614$	$\$ 0.839619$	$\$ 0.827849$
4	$\$ 0.822702$	$\$ 0.807217$	$\$ 0.792094$	$\$ 0.777323$
5	$\$ 0.783526$	$\$ 0.765134$	$\$ 0.747258$	$\$ 0.729881$
6	$\$ 0.746215$	$\$ 0.725246$	$\$ 0.704961$	$\$ 0.685334$
7	$\$ 0.710681$	$\$ 0.687437$	$\$ 0.665057$	$\$ 0.643506$
8	$\$ 0.676839$	$\$ 0.651599$	$\$ 0.627412$	$\$ 0.604231$
9	$\$ 0.644609$	$\$ 0.617629$	$\$ 0.591898$	$\$ 0.567353$
10	$\$ 0.613913$	$\$ 0.585431$	$\$ 0.558395$	$\$ 0.532726$
11	$\$ 0.584679$	$\$ 0.554911$	$\$ 0.526788$	$\$ 0.500212$
12	$\$ 0.556837$	$\$ 0.525982$	$\$ 0.496969$	$\$ 0.469683$
13	$\$ 0.530321$	$\$ 0.498561$	$\$ 0.468839$	$\$ 0.441017$
14	$\$ 0.505068$	$\$ 0.472569$	$\$ 0.442301$	$\$ 0.414100$
15	$\$ 0.481017$	$\$ 0.447933$	$\$ 0.417265$	$\$ 0.388827$

Years	$\mathbf{7 . 0 \%}$	$\mathbf{7 . 5 \%}$	$\mathbf{8 . 0 \%}$	$\mathbf{8 . 5 \%}$
1	$\$ 0.934579$	$\$ 0.930233$	$\$ 0.925926$	$\$ 0.921659$
2	$\$ 0.873439$	$\$ 0.865333$	$\$ 0.857339$	$\$ 0.849455$
3	$\$ 0.816298$	$\$ 0.804961$	$\$ 0.793832$	$\$ 0.782908$
4	$\$ 0.762895$	$\$ 0.748801$	$\$ 0.735030$	$\$ 0.721574$
5	$\$ 0.712986$	$\$ 0.696559$	$\$ 0.680583$	$\$ 0.665045$
6	$\$ 0.666342$	$\$ 0.647962$	$\$ 0.630170$	$\$ 0.612945$
7	$\$ 0.622750$	$\$ 0.602755$	$\$ 0.583490$	$\$ 0.564926$
8	$\$ 0.582009$	$\$ 0.560702$	$\$ 0.540269$	$\$ 0.520669$
9	$\$ 0.543934$	$\$ 0.521583$	$\$ 0.500249$	$\$ 0.479880$
10	$\$ 0.508349$	$\$ 0.485194$	$\$ 0.463193$	$\$ 0.442285$
11	$\$ 0.475093$	$\$ 0.451343$	$\$ 0.428883$	$\$ 0.407636$
12	$\$ 0.444012$	$\$ 0.419854$	$\$ 0.397114$	$\$ 0.375702$
13	$\$ 0.414964$	$\$ 0.390562$	$\$ 0.367698$	$\$ 0.346269$
14	$\$ 0.387817$	$\$ 0.363313$	$\$ 0.340461$	$\$ 0.319142$
15	$\$ 0.362446$	$\$ 0.337966$	$\$ 0.315242$	$\$ 0.294140$

Years	$\mathbf{9 . 0 \%}$	$\mathbf{9 . 5 \%}$	$\mathbf{1 0 . 0} \%$	$\mathbf{1 0 . 5 \%}$
1	$\$ 0.917431$	$\$ 0.913242$	$\$ 0.909091$	$\$ 0.904977$
2	$\$ 0.841680$	$\$ 0.834011$	$\$ 0.826446$	$\$ 0.818984$
3	$\$ 0.772183$	$\$ 0.761654$	$\$ 0.751315$	$\$ 0.741162$
4	$\$ 0.708425$	$\$ 0.695574$	$\$ 0.683013$	$\$ 0.670735$
5	$\$ 0.649931$	$\$ 0.635228$	$\$ 0.620921$	$\$ 0.607000$
6	$\$ 0.596267$	$\$ 0.580117$	$\$ 0.564474$	$\$ 0.549321$
7	$\$ 0.547034$	$\$ 0.529787$	$\$ 0.513158$	$\$ 0.497123$
8	$\$ 0.501866$	$\$ 0.483824$	$\$ 0.466507$	$\$ 0.449885$
9	$\$ 0.460428$	$\$ 0.441848$	$\$ 0.424098$	$\$ 0.407136$
10	$\$ 0.422411$	$\$ 0.403514$	$\$ 0.385543$	$\$ 0.368449$
11	$\$ 0.387533$	$\$ 0.368506$	$\$ 0.350494$	$\$ 0.333438$
12	$\$ 0.355535$	$\$ 0.336535$	$\$ 0.318631$	$\$ 0.301754$
13	$\$ 0.326179$	$\$ 0.307338$	$\$ 0.289664$	$\$ 0.273080$
14	$\$ 0.299246$	$\$ 0.280674$	$\$ 0.263331$	$\$ 0.247132$
15	$\$ 0.274538$	$\$ 0.256323$	$\$ 0.239392$	$\$ 0.223648$

Years	$\mathbf{1 1 . 0 \%}$	$\mathbf{1 1 . 5 \%}$	$\mathbf{1 2 . 0 \%}$	$\mathbf{1 2 . 5 \%}$
1	$\$ 0.900901$	$\$ 0.896861$	$\$ 0.892857$	$\$ 0.888889$
2	$\$ 0.811622$	$\$ 0.804360$	$\$ 0.797194$	$\$ 0.790123$
3	$\$ 0.731191$	$\$ 0.721399$	$\$ 0.711780$	$\$ 0.702332$
4	$\$ 0.658731$	$\$ 0.646994$	$\$ 0.635518$	$\$ 0.624295$
5	$\$ 0.593451$	$\$ 0.580264$	$\$ 0.567427$	$\$ 0.554929$
6	$\$ 0.534641$	$\$ 0.520416$	$\$ 0.506631$	$\$ 0.493270$
7	$\$ 0.481658$	$\$ 0.466741$	$\$ 0.452349$	$\$ 0.438462$
8	$\$ 0.433926$	$\$ 0.418602$	$\$ 0.403883$	$\$ 0.389744$
9	$\$ 0.390925$	$\$ 0.375428$	$\$ 0.360610$	$\$ 0.346439$
10	$\$ 0.352184$	$\$ 0.336706$	$\$ 0.321973$	$\$ 0.307946$
11	$\$ 0.317283$	$\$ 0.301979$	$\$ 0.287476$	$\$ 0.273730$
12	$\$ 0.285841$	$\$ 0.270833$	$\$ 0.256675$	$\$ 0.243315$
13	$\$ 0.257514$	$\$ 0.242900$	$\$ 0.229174$	$\$ 0.216280$
14	$\$ 0.231995$	$\$ 0.217847$	$\$ 0.204620$	$\$ 0.192249$
15	$\$ 0.209004$	$\$ 0.195379$	$\$ 0.182696$	$\$ 0.170888$

Years	$\mathbf{1 3 . 0 \%}$	$\mathbf{1 3 . 5 \%}$	$\mathbf{1 4 . 0 \%}$	$\mathbf{1 4 . 5 \%}$
1	$\$ 0.884956$	$\$ 0.881057$	$\$ 0.877193$	$\$ 0.873362$
2	$\$ 0.783147$	$\$ 0.776262$	$\$ 0.769468$	$\$ 0.762762$
3	$\$ 0.693050$	$\$ 0.683931$	$\$ 0.674972$	$\$ 0.666168$
4	$\$ 0.613319$	$\$ 0.602583$	$\$ 0.592080$	$\$ 0.581806$
5	$\$ 0.542760$	$\$ 0.530910$	$\$ 0.519369$	$\$ 0.508127$
6	$\$ 0.480319$	$\$ 0.467762$	$\$ 0.455587$	$\$ 0.443779$
7	$\$ 0.425061$	$\$ 0.412125$	$\$ 0.399637$	$\$ 0.387580$
8	$\$ 0.376160$	$\$ 0.363106$	$\$ 0.350559$	$\$ 0.338498$
9	$\$ 0.332885$	$\$ 0.319917$	$\$ 0.307508$	$\$ 0.295631$
10	$\$ 0.294588$	$\$ 0.281865$	$\$ 0.269744$	$\$ 0.258193$
11	$\$ 0.260698$	$\$ 0.248339$	$\$ 0.236617$	$\$ 0.225496$
12	$\$ 0.230706$	$\$ 0.218801$	$\$ 0.207559$	$\$ 0.196940$
13	$\$ 0.204165$	$\$ 0.192776$	$\$ 0.182069$	$\$ 0.172000$
14	$\$ 0.180677$	$\$ 0.169847$	$\$ 0.159710$	$\$ 0.150218$
15	$\$ 0.159891$	$\$ 0.149645$	$\$ 0.140096$	$\$ 0.131195$

Years	$\mathbf{1 5 . 0 \%}$
1	$\$ 0.869565$
2	$\$ 0.756144$
3	$\$ 0.657516$
4	$\$ 0.571753$
5	$\$ 0.497177$
6	$\$ 0.432328$
7	$\$ 0.375937$
8	$\$ 0.326902$
9	$\$ 0.284262$
10	$\$ 0.247185$
11	$\$ 0.214943$
12	$\$ 0.186907$
13	$\$ 0.162528$
14	$\$ 0.141329$
15	$\$ 0.122894$

Present Value of a Series of \$1 Payments to Be Paid in the Future

This table shows how much a series of $\$ 1$ payments, to be paid at the end of each period for a specified number of periods into the future, is currently worth, with interest at different rates, compounded annually. In other words, the table shows what you should be willing to pay, today, in order to receive a certain series of payments of $\$ 1$ each.

To use the table, find the vertical column under your interest rate (or cost of capital). Then find the horizontal row corresponding to the number of the last year you will receive the payment. The point at which the column and the row intersect is your present value of a series of $\$ 1$ payments. You can multiply this value by the number of dollars you expect to receive in each payment, in order to find the present value of the series.

Example: As an example of how the table can be used to compute the Internal Rate of Return of a major project, consider the following:

Niki's Beach Hotel is considering the purchase of a new computer system that will cost $\$ 7,500$, but will allow it to save about $\$ 2,000$ a year in desktop publishing expenses.

If you want to use the annuity tables to calculate the IRR of Niki's project, you must first compute the number to look up in the tables. You can do this by dividing the expected net cash outflow (costs) for the project by the expected average annual net cash inflow (savings). In this case, the cost of the project (net cash outflow) is $\$ 7,500$, and the average annual net cash inflow is $\$ 2,000$.

$$
\$ 7,500 \div \$ 2,000=3.75
$$

Then, look at the row corresponding to the number of years the project or equipment will be in use (in this case, 5). Look across the rows until you find the number that is closest to the result you found (3.75). Then look at the top of the column in which the closest number was found, to see the interest rate that is Niki's IRR (in this case, $10 \%-10.5 \%$).

PRESENT WORTH OF ONE-DOLLAR PER PERIOD PAYABLE AT END OF EACH PERIOD

Years	$\mathbf{3 \%}$	$\mathbf{3 . 5 \%}$	$\mathbf{4 \%}$	$\mathbf{4 . 5 \%}$
1	$\$ 0.970874$	$\$ 0.966184$	$\$ 0.961538$	$\$ 0.956938$
2	$\$ 1.913470$	$\$ 1.899694$	$\$ 1.886095$	$\$ 1.872668$
3	$\$ 2.828611$	$\$ 2.801637$	$\$ 2.775091$	$\$ 2.748964$
4	$\$ 3.717098$	$\$ 3.673079$	$\$ 3.629895$	$\$ 3.587526$
5	$\$ 4.579707$	$\$ 4.515052$	$\$ 4.451822$	$\$ 4.389977$
6	$\$ 5.417191$	$\$ 5.328553$	$\$ 5.242137$	$\$ 5.157872$
7	$\$ 6.230283$	$\$ 6.114544$	$\$ 6.002055$	$\$ 5.892701$
8	$\$ 7.019692$	$\$ 6.873956$	$\$ 6.732745$	$\$ 6.595886$
9	$\$ 7.786109$	$\$ 7.607687$	$\$ 7.435332$	$\$ 7.268790$
10	$\$ 8.530203$	$\$ 8.316605$	$\$ 8.110896$	$\$ 7.912718$
11	$\$ 9.252624$	$\$ 9.001551$	$\$ 8.760477$	$\$ 8.528917$
12	$\$ 9.954004$	$\$ 9.663334$	$\$ 9.385074$	$\$ 9.118581$
13	$\$ 10.634955$	$\$ 10.302738$	$\$ 9.985648$	$\$ 9.682852$
14	$\$ 11.296073$	$\$ 10.920520$	$\$ 10.563123$	$\$ 10.222825$
15	$\$ 11.937935$	$\$ 11.517411$	$\$ 11.118387$	$\$ 10.739546$

Years	$\mathbf{5 \%}$	$\mathbf{5 . 5 \%}$	$\mathbf{6 \%}$	$\mathbf{6 . 5 \%}$
1	$\$ 0.952381$	$\$ 0.947867$	$\$ 0.943396$	$\$ 0.938967$
2	$\$ 1.859410$	$\$ 1.846320$	$\$ 1.833393$	$\$ 1.820626$
3	$\$ 2.723248$	$\$ 2.697933$	$\$ 2.673012$	$\$ 2.648476$
4	$\$ 3.545951$	$\$ 3.505150$	$\$ 3.465106$	$\$ 3.425799$
5	$\$ 4.329477$	$\$ 4.270284$	$\$ 4.212364$	$\$ 4.155679$
6	$\$ 5.075692$	$\$ 4.995530$	$\$ 4.917324$	$\$ 4.841014$
7	$\$ 5.786373$	$\$ 5.682967$	$\$ 5.582381$	$\$ 5.484520$
8	$\$ 6.463213$	$\$ 6.334566$	$\$ 6.209794$	$\$ 6.088751$
9	$\$ 7.107822$	$\$ 6.952195$	$\$ 6.801692$	$\$ 6.656104$
10	$\$ 7.721735$	$\$ 7.537626$	$\$ 7.360087$	$\$ 7.188830$
11	$\$ 8.306414$	$\$ 8.092536$	$\$ 7.886875$	$\$ 7.689042$
12	$\$ 8.863252$	$\$ 8.618518$	$\$ 8.383844$	$\$ 8.158725$
13	$\$ 9.393573$	$\$ 9.117079$	$\$ 8.852683$	$\$ 8.599742$
14	$\$ 9.898641$	$\$ 9.589648$	$\$ 9.294984$	$\$ 9.013842$
15	$\$ 10.379658$	$\$ 10.037581$	$\$ 9.712249$	$\$ 9.402669$

Years	$\mathbf{7 \%}$	$\mathbf{7 . 5 \%}$	$\mathbf{8 \%}$	$\mathbf{8 . 5 \%}$
1	$\$ 0.934579$	$\$ 0.930233$	$\$ 0.925926$	$\$ 0.921659$
2	$\$ 1.808018$	$\$ 1.795565$	$\$ 1.783265$	$\$ 1.771114$
3	$\$ 2.624316$	$\$ 2.600526$	$\$ 2.577097$	$\$ 2.554022$
4	$\$ 3.387211$	$\$ 3.349326$	$\$ 3.312127$	$\$ 3.275597$
5	$\$ 4.100197$	$\$ 4.045885$	$\$ 3.992710$	$\$ 3.940642$
6	$\$ 4.766540$	$\$ 4.693846$	$\$ 4.622880$	$\$ 4.553587$
7	$\$ 5.389289$	$\$ 5.296601$	$\$ 5.206370$	$\$ 5.118514$
8	$\$ 5.971299$	$\$ 5.857304$	$\$ 5.746639$	$\$ 5.639183$
9	$\$ 6.515232$	$\$ 6.378887$	$\$ 6.246888$	$\$ 6.119063$
10	$\$ 7.023582$	$\$ 6.864081$	$\$ 6.710081$	$\$ 6.561348$
11	$\$ 7.498674$	$\$ 7.315424$	$\$ 7.138964$	$\$ 6.968984$
12	$\$ 7.942686$	$\$ 7.735278$	$\$ 7.536078$	$\$ 7.344686$
13	$\$ 8.357651$	$\$ 8.125840$	$\$ 7.903776$	$\$ 7.690955$
14	$\$ 8.745468$	$\$ 8.489154$	$\$ 8.244237$	$\$ 8.010097$
15	$\$ 9.107914$	$\$ 8.827120$	$\$ 8.559479$	$\$ 8.304237$

Years	$\mathbf{9 \%}$	$\mathbf{9 . 5 \%}$	$\mathbf{1 0 \%}$	$\mathbf{1 0 . 5 \%}$
1	$\$ 0.917431$	$\$ 0.913242$	$\$ 0.909091$	$\$ 0.904977$
2	$\$ 1.759111$	$\$ 1.747253$	$\$ 1.735537$	$\$ 1.723961$
3	$\$ 2.531295$	$\$ 2.508907$	$\$ 2.486852$	$\$ 2.465123$
4	$\$ 3.239720$	$\$ 3.204481$	$\$ 3.169865$	$\$ 3.135858$
5	$\$ 3.889651$	$\$ 3.839709$	$\$ 3.790787$	$\$ 3.742858$
6	$\$ 4.485919$	$\$ 4.419825$	$\$ 4.355261$	$\$ 4.292179$
7	$\$ 5.032953$	$\$ 4.949612$	$\$ 4.868419$	$\$ 4.789303$
8	$\$ 5.534819$	$\$ 5.433436$	$\$ 5.334926$	$\$ 5.239188$
9	$\$ 5.995247$	$\$ 5.875284$	$\$ 5.759024$	$\$ 5.646324$
10	$\$ 6.417658$	$\$ 6.278798$	$\$ 6.144567$	$\$ 6.014773$
11	$\$ 6.805191$	$\$ 6.647304$	$\$ 6.495061$	$\$ 6.348211$
12	$\$ 7.160725$	$\$ 6.983839$	$\$ 6.813692$	$\$ 6.649964$
13	$\$ 7.486904$	$\$ 7.291178$	$\$ 7.103356$	$\$ 6.923045$
14	$\$ 7.786150$	$\$ 7.571852$	$\$ 7.366687$	$\$ 7.170176$
15	$\$ 8.060688$	$\$ 7.828175$	$\$ 7.606080$	$\$ 7.393825$

Years	$\mathbf{1 1 \%}$	$\mathbf{1 1 . 5 \%}$	$\mathbf{1 2 \%}$	$\mathbf{1 2 . 5 \%}$
1	$\$ 0.900901$	$\$ 0.896861$	$\$ 0.892857$	$\$ 0.888889$
2	$\$ 1.712523$	$\$ 1.701221$	$\$ 1.690051$	$\$ 1.679012$
3	$\$ 2.443715$	$\$ 2.422619$	$\$ 2.401831$	$\$ 2.381344$
4	$\$ 3.102446$	$\$ 3.069614$	$\$ 3.037349$	$\$ 3.005639$
5	$\$ 3.695897$	$\$ 3.649878$	$\$ 3.604776$	$\$ 3.560568$
6	$\$ 4.230538$	$\$ 4.170294$	$\$ 4.111407$	$\$ 4.053839$
7	$\$ 4.712196$	$\$ 4.637035$	$\$ 4.563757$	$\$ 4.492301$
8	$\$ 5.146123$	$\$ 5.055637$	$\$ 4.967640$	$\$ 4.882045$
9	$\$ 5.537048$	$\$ 5.431064$	$\$ 5.328250$	$\$ 5.228485$
10	$\$ 5.889232$	$\$ 5.767771$	$\$ 5.650223$	$\$ 5.536431$
11	$\$ 6.206515$	$\$ 6.069750$	$\$ 5.937699$	$\$ 5.810161$
12	$\$ 6.492356$	$\$ 6.340583$	$\$ 6.194374$	$\$ 6.053476$
13	$\$ 6.749870$	$\$ 6.583482$	$\$ 6.423548$	$\$ 6.269757$
14	$\$ 6.981865$	$\$ 6.801329$	$\$ 6.628168$	$\$ 6.462006$
15	$\$ 7.190870$	$\$ 6.996708$	$\$ 6.810864$	$\$ 6.632894$

Years	$\mathbf{1 3 \%}$	$\mathbf{1 3 . 5 \%}$	$\mathbf{1 4 \%}$	$\mathbf{1 4 . 5 \%}$
1	$\$ 0.884956$	$\$ 0.881057$	$\$ 0.877193$	$\$ 0.873362$
2	$\$ 1.668102$	$\$ 1.657319$	$\$ 1.646661$	$\$ 1.636124$
3	$\$ 2.361153$	$\$ 2.341250$	$\$ 2.321632$	$\$ 2.302292$
4	$\$ 2.974471$	$\$ 2.943833$	$\$ 2.913712$	$\$ 2.884098$
5	$\$ 3.517231$	$\$ 3.474743$	$\$ 3.433081$	$\$ 3.392225$
6	$\$ 3.997550$	$\$ 3.942505$	$\$ 3.888668$	$\$ 3.836005$
7	$\$ 4.422610$	$\$ 4.354630$	$\$ 4.288305$	$\$ 4.223585$
8	$\$ 4.798770$	$\$ 4.717735$	$\$ 4.638864$	$\$ 4.562083$
9	$\$ 5.131655$	$\$ 5.037652$	$\$ 4.946372$	$\$ 4.857714$
10	$\$ 5.426243$	$\$ 5.319517$	$\$ 5.216116$	$\$ 5.115908$
11	$\$ 5.686941$	$\$ 5.567857$	$\$ 5.452733$	$\$ 5.341404$
12	$\$ 5.917647$	$\$ 5.786658$	$\$ 5.660292$	$\$ 5.538344$
13	$\$ 6.121812$	$\$ 5.979434$	$\$ 5.842362$	$\$ 5.710344$
14	$\$ 6.302488$	$\$ 6.149281$	$\$ 6.002072$	$\$ 5.860563$
15	$\$ 6.462379$	$\$ 6.298926$	$\$ 6.142168$	$\$ 5.991758$

Years	$\mathbf{1 5 \%}$
1	$\$ 0.869565$
2	$\$ 1.625709$
3	$\$ 2.283225$
4	$\$ 2.854978$
5	$\$ 3.352155$
6	$\$ 3.784483$
7	$\$ 4.160420$
8	$\$ 4.487322$
9	$\$ 4.771584$
10	$\$ 5.018769$
11	$\$ 5.233712$
12	$\$ 5.420619$
13	$\$ 5.583147$
14	$\$ 5.724476$
15	$\$ 5.847370$

EXHIBIT

OTHER VALUATION METHODS
 BY WALL STREET ANALYSTS

CIBC World Markets on Valuation of MGM Mirage

Exhibit 17. EPS Comparative Valuation Table

Merrill Lynch Corporate Valuations－Boyd Gaming

Merrill Lynch

Table 9：Merri Lynch Gaming and Lodging Summary Valuation Table

Compary	Raxing	$\begin{array}{r} \text { Pilce } \\ 12 / 142005 \\ \hline \end{array}$	Sh aros Out． （nI）	me Cap． （bil）	Aug． Vol （thod）	$\begin{gathered} \text { OV. } \\ \text { Mold } \end{gathered}$	$\begin{gathered} \mathrm{rad} \\ \mathrm{Cag} \\ \hline \end{gathered}$	$\begin{gathered} \text { EP } \\ 200 \mathrm{Se} \\ \hline \end{gathered}$	$\frac{5}{2006 E}$	$200 \frac{\operatorname{EPS}}{44}$	$\frac{S \text { Crowe }}{}$		2005	$2005 E$	$\begin{aligned} & \frac{\text { EVEE }}{\text { Mult }} \\ & 200 \mathrm{SE} \end{aligned}$	$\frac{\frac{1 T D A}{\text { glo }}}{2006 E}$
S8P50］		\＄1，27274				1．7\％	6%	\＄7．4．44	\＄7960	19%	13\％	7%	17．1x	雱．0x		
LGEMNGCCIPMME3																
OwnanOparatom																
Faimortar ${ }^{\text {a }}$	8．2－7	\＄4070	76.9	$\$ 3.1$	896	0.36	17\％	\＄0．70	\＄0．90	20\％	6\％	29\％	园2x	45．2x	210x	相 4 x
Hiknillt	$8.1-7$	\＄2291	4150	\＄95	3,044	0．7\％	1\％	\＄025	\＄1．02	39\％	42\％	20\％	$26.9 x$	$22.4 \times$	9.9 x	9．4x
Lacuitatai	Rstr	\＄1．04	Rsar	Rst	Psor	Rstr	Rst	Pstr	Rst	Rstr						
LodgimiLGN	C－2．9	\＄1075	246	\＄03	70	0.06	－13\％	－\＄0．45	\＄0．10	NM	NM	NM	NM	NM	14.5 x	11.5 x
Crient ExprealCer	C－1－7	\＄$\$ 1.3$	3 c	\＄12	345	0.3	56%	\＄1．12	\＄1．57	2a\％	36%	40\％	2 m 5 x	20.38	15 2 x	$11.9{ }^{\text {x }}$
Strwood／HOT＊	B－1．7	\＄4．79	2230	\＄14．4	1，733	1．3\％	11%	$\$ 2.27$	\＄2．17	3\％	40\％	－5\％	2 m 5 x	24.78	133x	11.5 x
Anorago							14\％			49\％	317	21\％	35.5 x	2 za ．fx	149x	12.5 x
ManagowFranchisam																
Four SensonaF＇S	8－2．7	\＄43 40	36.6	\＄18	376	0．2\％	－41\％	\＄1．05	\＄150	38	2\％	43\％	6．${ }^{6} .1 \mathrm{x}$	$32.2 \times$	$31.9 x$	223 x
Mriotuln	B－1．7	棫7．67	2293	\＄15．5	1231	0．6\％	78	sand	52.96	27\％	25\％	4\％	22．0x	22．9x	172x	14．2x
Anorago							－17\％			55%	15	$20 x$	$34.1 \times$	27．6x	$24.5 x$	103］
US．Lodging RETs											0 Grow					
Equiy Inmeed	8．1－7	\＄13a0	54.9	\＄03	215	4．9\％	\％\％	\＄1．11	\＄131	13%	31\％	根\％	12.5 x	20．8x	13.4 x	11.5 x
Sunstna＇SHO	Rst	\＄25．92	Rsit	Rstr	Psar	Rst	Rst	Rst	Rst	Rstr	Rst	Rst	Rst	Pers	Rst	Rst
FolconiFCH	8．2－7	\＄17．16	627	\＄1．1	345	3．8\％	17\％	\＄130	\＄1．70	6\％	29\％	3n\％	133x	0．fx	12.7 x	11.5 x
HostMarion－MT	8．1．7	\＄1271	203，${ }^{1}$	\＄7．5	1,913	2．4\％	as	\＄1．19	\＄1．46	44\％	27\％	20\％	15.7 x	12．ax	14．0x	12．4x
Anorago							13＊			$5 \% \%$	27%	27\％	14．5x	f1．5x	13．4x	12．0x
CHMNG COTPANES																
LargeCapOpersices Harah＇s Enne	8－1．7	\＄6．36	т6． 1	\＄12．5	1．877	2．2\％	1\％	㪡32	\＄0334	14\％	0\％	2\％	203x	19．9x	112 x	$90.0{ }^{7}$
MGM MRMGEMGM	83－9	\＄3697	2867	\＄110	2022	0．0\％	2\％	\＄1．5\％	\＄1．76	6\％	2\％	12\％	$20.6 x$	21．0x	11.5 x	$9.7 \bar{x}^{\text {¹ }}$
Winn RecortaWhNN	C－3－9	\＄56．04	090	\＄6，	1，123	0.05	－19\％	－+0.26	＋0．90	NM	NM	NM	NM	61.45	44．0x	21.9 x
LasVegrssandsLVS	C－2．9	\＄3956	3547	\＄140	1，320	0.0%	－19\％	\＄2．09	\＄123	NM	109\％	13\％	$3.3 x$	$32.0 x$	$26.5 x$	24.7 x
Boyd Garing／byo	C－2－7	\＄46．17	499	\＄4．	734	1．17\％	11\％	\＄223	\＄2．65	NM	70\％	寝\％	202x	17.4 x	203x	$8.7 x$
Stion Casmot＇STN	B－1．7	安4．53	700	\＄4．5	499	1．0\％	等家	\＄2．82	\＄2．96	70\％	26\％	13\％	$24.7 \times$	21．9x	132x	$11.4 x$
Amorago							－1\％			45%	46\％	117	25．0x	23．9x	194x	$14.2 x$
Smail－Cap Operators																
Ameriani／ASCA	C－2－7	\＄2323	57.2	\＄1．3	203	1.36	a\％	\＄1．15	\＄120］	－3\％	2\％	5\％	202x	19．3x	8．0x	a．0x
AtriazR	c－2．9	\＄2923	37.4	\＄1．1	295	0．0\％	－化\％	\＄1．44	\＄1．61	－6\％	14\％	12\％	20．4x	疑． 2 x	8．1x	$7.5 x$
ProxiliPes ${ }^{\text {a }}$	C－1－9	\＄2403	434	\＄10	521	0.0%	21\％	\＄035	\＄0．53	NM	NM	7\％	园这	$39.2 \times$	$12.7 x$	$93{ }^{7}$
Penn Natomilipeed	C－1－9	\＄3263	a！ 4	\＄23	571	0．0\％	as	\＄1．4 ${ }^{\circ}$	\＄2．01	39\％	30\％	37\％	$223 x$	宿． 3 x	14．9x	$9.0{ }^{1}$
Anorage							5\％			－4 4	17\％	32%	329x	$23.2 x$	109x	3．5x
Garing Equipment Supplloss																
GTECH／GTK	8－2－7	\＄$\$ 1.45$	1300	\＄4．1	a35	1．1\％	21\％	\＄1．86	\＄1．72	7\％	11\％	4\％	19．0x	疑． 3 x	73x	72x
GTMGT	8．2－7	\＄30．00	361.4	\＄702	2315	1．7\％	－13\％	\＄120	\＄1．10	20\％	－10\％	－2\％	20．0x	2．4x	12.1 x	12．4x
Anorage							4\％			13\％	0%	18	22．0x	$21.3 x$	99x	93x
LESTEE COMPWMIS3																
Crube Linas Caminaliocl	8－1．7	\＄50．41	\％ 40	\＄473	2，17	1．4\％	4\％	$\$ 2.70$	\＄8．10	48\％	20\％	15\％	20．5x	$17.9 \times$	14．6x	13.1 x
Poyal CarbbaraRCL	8－1．7	\＄47．01	zaco	\＄11，1	1，003	1．3\％	－14\％	\＄230	\＄237	09\％	24\％	3\％	它䢕	㝘．4x	11.5 x	$0.7 x$
Arerago										54，	228	9%	鲑．7x	17．fx	13．1x	11．9x
Ledsu no Vehicles																
Brunswikesc ${ }^{3}$	8－2．7	\＄41．20	993	\＄4．1	780	1．8\％	－17\％	\＄33a	\＄3ad	69\％	22\％	12\％	12．2x	10．9x	68 x	6．7x
Harky－DavidsanHDI	8－2－7	\＄5306	275.5	\＄14．6	1.920	1．4\％	－13\％	\＄2．42	88.75	20\％	14\％	10\％	15.5 x	14．fx	atx	79x
MrineMaxilZO ${ }^{\text {a }}$	C－1－9	\＄30．92	127	\＄0，6	238	0．0\％	4%	\＄1ad	\＄1．90	26\％	19\％	4\％	宜 5 x	15．9x	t02x	9．4x
Polaris industios：Pil	B．1．7	\＄50．53	437	$\$ 2.2$	393	2．2\％	－26\％	\＄ 3.23	\＄3．48	14\％	as	6\％	15.4 x	14．7x		72x
Anorage										320	16x	3	14．9x	13．9x	3．4x	7．5x

[^0]＊Str wood＇s 200；EPV mulplo，caxh iow and EV catcultions have been modited bo acoourt br sin of properies bo HMT in 2006

[^0]: LOVis covered by Amanda Eryant＂PaKiscovered by Vnoent／ggo；${ }^{3} \mathrm{BC}$ and HZO ane covered by Hakan Ipolod

