Chapter 11

"An Analytical Approach to
Investments, Finance and Credit"

Secondary Debt Markets: Corporate Bonds

PROFESSOR C. DROUSSIOTIS

Corporate Bonds

- In general, investing in bonds is safer than investing in stocks.
- The return is expected to be fixed assuming the investor holds the bonds until the contractual maturity, thus the risk is estimated to be lower than the equity's investment risk.
- What gets a little complicated with holding corporate bonds is that the market value of these bonds could fluctuate due to many factors such as
- interest rates
- credit risk
- market liquidity
- refinancing

Raising / Issuing Corporate Bonds

The companies issuing bonds in the public markets are required by the Securities and Exchange Commission (SEC) to be independently rated by at least two rating agencies before they are issued Secured Bonds

CORPORATE BOND RATING AGENCIES' SCALES				
Description		Standard \& Poor's	Moody's	Fitch
Highest Quality (Risk Free)	INVESTMENT GRADE	AAA	Aaa	AAA
High Quality		AA+ AA AA-	Aa1 Aa2 Aa3	AA+ AA AA-
Strong Payment Capacity		A+ A A-	$\begin{aligned} & \text { A1 } \\ & \text { A2 } \\ & \text { A3 } \end{aligned}$	A+ A A-
Adequate Payment Capacity		$\begin{gathered} \text { BBB+ } \\ \text { BBB } \\ \text { BBB- } \end{gathered}$	Baa1 Baa2 Baa3	$\begin{gathered} \text { BBB }+ \\ \text { BBB } \\ \text { BBB- } \end{gathered}$
Likely to fullfill Obligations		$\begin{gathered} \mathrm{BB}+ \\ \mathrm{BB} \\ \mathrm{BB}- \end{gathered}$	$\begin{aligned} & \mathrm{Ba1} \\ & \mathrm{Ba2} \\ & \mathrm{Ba3} \end{aligned}$	$\begin{gathered} \mathrm{BB}+ \\ \mathrm{BB} \\ \mathrm{BB}- \end{gathered}$
High-risk Obligations		$\begin{gathered} B+ \\ B \\ B- \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { B2 } \\ & \text { B3 } \end{aligned}$	$\begin{gathered} \mathrm{B}+ \\ \mathrm{B} \\ \mathrm{~B}- \end{gathered}$
Current Vulnarable to Default	$\begin{aligned} & \tilde{\sim} \\ & \stackrel{y}{w} \\ & \frac{5}{0} \end{aligned}$	$\begin{gathered} \text { CCC+ } \\ \text { CCC } \\ \text { CCC- } \\ \text { CC } \\ \text { C } \end{gathered}$	Caa	CCC
Default	DEFAULT	D	D	DDD,DD,
Figure 7.2				

Secondary Bond Markets: An Overview

- The secondary market for publicly traded bonds takes place in over-thecounter transactions.
- Bonds need to register with the SEC and report all secondary trading activities in a centralized reporting platform called TRACE (trade reporting and compliance engine).
- The bonds are rated, as required by the SEC, by two independent rating agencies before they are issued. As a precaution, they continue to be monitored for upgrades or downgrades. The rating that is assigned to the bond security is an estimation on the probability of default.
- Bonds are basically traded in two separate markets: investment grade and non-investment grade (high yield).

Corporate Bond Money Terms Revisited

- Amount (Book Value Vs Market Value and other prices)
- Interest Rate (Coupon Rate Vs Yield)
- Maturity (Term of the bonds in years)
- Payment (Coupon Payments and Redemption Price)

1. AMOUNT

Bond Value / Prices Concepts

- Face value (par value) - \$1,000 or 100\% of \$1,000
- Market value/market price (clean price) - Trading at Discount, Premium, Par
- Invoice Price (Dirty Price)
- Redemption Price
- Call Price
- Original Issued Discount

Market Value

- Secondary pricing starts on the day of issuance until the bonds are refinanced. When they say that the market price of a bond is trading at either a discount, at par, or at a premium, it indicates the bond can be bought below a percentage of $\$ 1,000$, at $\$ 1,000$, or above $\$ 1,000$ per bond, respectively.
- For example, a bond that is trading at 98 means that you can trade it in the secondary market at 98% of a $\$ 1,000$ or $\$ 980$. This bond is considered to be trading at a discount. If a bond is trading at 103 , then the secondary market value is 103% of $\$ 1,000$, or $\$ 1,030$ market price.
- FORMULA: MV $=\sum_{1}^{n} \frac{C P}{(1+Y T M)^{\mathrm{n}}}+\frac{\$ 1,000}{(1+\mathrm{YTM})^{\mathrm{n}}}$ and MV/10 $=$ MP
- EXAMPLE:
- A 10-year Corporate Bond with a 4.5% annual coupon paid every six months (semi-annual) is yielding 4.74%. Find the Market Value of each bond. Also find the market price (\% of Par)

$$
\begin{gathered}
\mathrm{MV}=\sum_{1}^{10} \frac{21.25}{(1+0.0474 / 2)^{10}}+\frac{\$ 1,000}{(1+.0474)^{10}}=170.42+807.99=978.41 \\
\mathrm{MP}=\frac{978.41}{10}=97.841
\end{gathered}
$$

Market Value/Price

EXAMPLEUSING EXCEL:

A 10-year Corporate Bond with a 4.5% annual coupon paid every six months (semi-annual) is yielding 4.74%. Find the Market Value of each bond. Also find the market price (\% of Par)

Reasons bond prices move up or down in the secondary market

- Change of risk-free rate
- Rating downgrade/upgrade
- Refinancing

Invoice Price

- The invoice price or "dirty price" is the total price of the bond including the market price and accrued interest.
- This is the amount that you would pay or receive if you purchase or sell the bond.
- Corporate bonds (and municipal bonds) are based on a 360-day year when calculating the accrued interest. In other words, every month has 30 days (daycount basis)-even February has 30 days when calculating the accrued interest
- The "regular way trade" (per SEC definition) is T+3 business days (trade day + 3 days) to calculate the settlement day
- The invoice price is
$\mathrm{IP}=\mathrm{MV}+$ Accrued interest
Where,
Accrued Interest $=$ Semiannual CP x Days since last CP / 180 days

Invoice Price Example

- Market Price / Market value= 98.50 / \$985.00.
- Coupon Rate $=7.5 \%$ or $\$ 75$ per year coupon ($\$ 37.50$ semi-annual payment)
- Coupon Dates = February 28, August 31
- Trade Day = Thursday, January 17
- Settlement Day (T+3 business Days): Tuesday, January 22
- Days since the last coupon payment is calculated at 142 days

30 days in September +30 days is October +30 days in November +30 days in December + 17 days in January through the trade days +5 days $=142$ Days

- $142 / 180 \times \$ 37.50=\$ 29.50$.
- The invoice price is calculated $\$ 1,042.58$, calculated as $\$ 985.00+$ $\$ 29.50=\$ 1,014.58$.

MARKET PRICE / INVOICE PRICE

Invoice Price Example

Manual Example:
Bought (Traded) F\&A the 7.50\% Corporate Bond at 98.50 on Thursday, January 17, 2019

Example Practice - Calculating MV (Clean) and IP (Dirty)

Coupon Rate= 8.0\%
Market Price = 96.50
Coupon Days = Mar 31, Sep 30
Trading Day = Tuesday, June 16
Accrued Basis =.360 days (Corp. Bond)
Market Value \$ Per Bond =
Invoice Price \$ =

First, need to find Settlement Day =
Second, need to find days since Last Coupon=
Third, need to calculate the accrued Interest=

Market Value and Invoice Price using Excel (given the yield)

	B	C		D	E	F
2	MARKET PRICE \& INVOICE PRICE CALCULATION					
3						
4	CALCULATING THE PRICE					
5	Settlement Date=			3/15/2015		
6	Maturity Date=			1/15/2025		
7	Coupon Rate=			4.250\%		
8	Yield to Maturity=			4.740\%		
9	Redemption value \%=			100		
10	Coupon Pmts per year=		2			
11						
12	Market Price =		96.179		=PRICE(D5,D6,D7,D8,D9,D10	
13						
14	Market Value =			961.79	=+D12*10	
15						
16	Day since last coupon=			60		=COUPDAYBS(D5,D6,D10,0)
17	Days in coupon period=		180			=COUPDAYS(D5,D6,D10,0)
18	Accrued Interest=		\$	\$ 7.08	$=(\mathrm{D} 16 / \mathrm{D} 17)^{\star} \mathrm{D}^{*} 1000 / 2$	
19						
20	Invoice Price=		\$	968.87		=+D18+D14
21						

2. INTEREST RATE

Bond Interest \% and Yields \% Concepts

- Nominal yield (coupon rate)
- Accrued interest
- Yield to maturity (YTM)
- Yield to call (YTC)
- Yield to worst (YTW)
- Current yield (CY)

Calculating Yield to Maturity (using Formulas)

$\underline{\text { Annual coupon or interest payment } \pm\left[\frac{\text { Discount or premium }}{\text { Years to maturity }}\right]}$

Average price of bonds

For example, assuming a 7-year Bond with a Coupon Rate of 4.25% that is trading at 96.179 and a redemption price a 100.

The annual coupon payment is $\$ 42.50(4.25 \% \times \$ 1000)$; the discount is $\$ 38.21$ ($1,000-961.79$); at 7 years until maturity with current price of the bonds is between $\$ 1,000$ and $\$ 961.79$ since issuance. Then, the rule of thumb yield to maturity is calculated as follows:

$$
\frac{42.50+\left[\frac{38.21}{7}\right]}{(961.79+1,000) / 2}=\frac{42.50+5.46}{980.90}=0.04889=4.9 \%
$$

Calculating Yield to Maturity (using Excel)

Calculating Yield to Call (YTC) and Yield to Worse (YTW)

Calculating Current Yield (Quick \& Dirty)

Current yield (CY): This measures a quick annual rate of return for the investor who is planning to buy the bond in the secondary market.

$$
\text { Current bond yield }=\frac{\text { Annual coupon or interest payment }}{\text { Market price }}
$$

Example: A $\$ 1,000$ bond that is selling for $\$ 985$ and paying an 8% coupon rate. The current yield is calculated as follows:

$$
\text { Current bond yield }=\frac{\$ 80.00}{\$ 985.00}=0.08122=8.122 \%
$$

3. Maturities/Time

Bond Dates and General Timing Concepts

- Issuance date
- Maturity date
- Coupon dates
- Call dates
- Trading day
- Settlement day (T+3)
- Day-count basis

4. Bond Payments

Bond Payment Concepts

- Coupon payments
- Frequency of payments
- Principal payments
- Term bond, the most popular, refers to the bond that pays all its principal amount at maturity. For example, for a 5-year bond the principal payments for years 1-5 are 0, 0, 0, 0, 1000.
- Serial bond refers to the bond that pays all its principal amount equally across maturity. For example, for a 5-year bond the principal payments for years 1-5 are 200, 200, 200, 200, 200.
- Bullet bond refers to the bond that pays a partial amount of the principal upfront and the balance at maturity. For example, for a 5 -year bond the principal payments for years 1-5 are 50, 50,50,50, 800 .

Bond Investment Valuation

Bond
 Investment
 Valuation Concepts

Bond analysis lives by the fundamental concept that the value of the bonds in the secondary market go up and down based on the return expectation for the investor looking to buy these bonds.

MARKET PRICES VS YIELDS (INVERSE RELATIONSHIP)

The lowest result between YTM and YTM is YTW

Bond Price

$$
\mathrm{MV}=\sum_{1}^{\mathrm{n}} \frac{\mathrm{CP}}{(1+\mathrm{YTM})^{\mathrm{n}}}+\frac{\$ 1,000}{(1+\mathrm{YTM})^{\mathrm{n}}} \text { and } \mathrm{MP}=\frac{\mathrm{MV}}{10}
$$

Duration (D)

This is a measurement the price sensitivity of the bond and/or bond funds to changes with interest rates. They are two types of duration measurement

- Macaulay Duration (expressed in years): identifies how many years it will take to recover the initial investment (market value) by calculating the weighted average of each present value of future coupon payments using the yield as a discount rate times the payment year
$\mathrm{Dm}=\frac{\sum_{1}^{\mathrm{n}} \frac{\mathrm{CF}}{(1+\mathrm{y}) \mathrm{t}^{\mathrm{t}} \mathrm{t}}}{\mathrm{MV}}$
- Modified Duration: (expressed in percentages): Measures the average percentage of movement of the bond price for every 1% movement of the interest rate. For example, the price of a bond with a duration of 5 would be expected to move 5% for every 1% move in interest rates.

Modified $\mathrm{D}=\frac{\mathrm{Dm}}{1+\frac{\mathrm{y}}{\mathrm{n}}}$

Convexity (C)

Like the modified duration, convexity is a further measurement of the relationship between the value of the bond and a movement of interest rates. It also measures the sensitivity of the bond price to 1% movement of the interest rates, but it's calculated on non-linear relationships. Duration can be a good measure of how bond prices may be affected due to sudden fluctuations in interest rates. Nevertheless, the relationship between bond prices and yields has more of a sloped or convex relationship. It is represented as a derivative to the duration.

The formula for calculating the convexity is as follows:

$$
\text { Convexity }=\frac{\frac{1}{(1+y)^{2}} \sum_{1}^{n} \frac{C F}{(1+y)^{t}}\left(\mathrm{t}^{2}-\mathrm{t}\right)}{\mathrm{MV} \cdot \mathrm{f}^{2}}
$$

- Where y is the periodic yield, t is the time period, CF is the cash flow payment or the coupon payment, n is the number is periods, and f is the frequency of payments per year.

Calculating Price, Duration and Convexity

