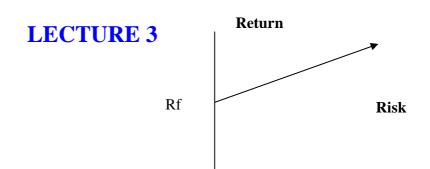
Professor Chris Droussiotis



RISK RETURN –

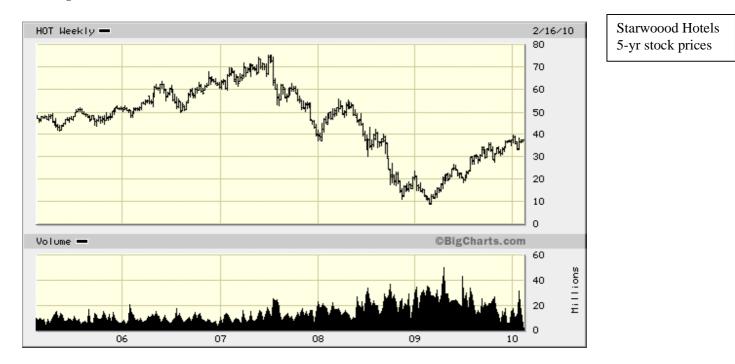
Chapter 5

- Traditionally, when you define return you refer to a bank savings account (risk free) plus a risky portfolio of US stocks. Today, investors have access to a variety of asset classes and financial engineered investments
- The Book "The Quants" by Scott Peterson financial engineering achieving the ALPHA.

HPR = (Ending Price – Beg. Price + Div) / Beg. Price

Example:

Current Price = 100, expected price to increase to 110 in a year. Within the year you are expected to receive 4 dividend, therefore the HPR=(110-100+4)/



11

Professor Chris Droussiotis

Measuring Return over a multiple periods

ARITHMETIC AVERAGE (Sum of Quarters)

GEOMETRIC AVERAGE (Single per Quarter – cumulative +compounding)

	0	1	2	3	4
HPR %		10	25	-20	25

Arithmetic:

(10+25-20+25) / 4 = 10%

Geometric:

 $\overline{(1+0.10) * (1+0.25) * (1-0.20) * (1+0.25)} = (1+r)^{4}$ r = [(1+0.10) * (1+0.25) * (1-0.20) * (1+0.25)]^{1/4} - 1

 $(1.1*1.25*.80*1.25)^{1/4} - 1 =$

 $1.375 \ ^{1/4} - 1 = 8.29\%$

Dollar Weighted Return

	0	1	2	3	4
	(initial)				
Net CF (\$)	-1	-0.1	-0.5	0.8	1.0

 $1 = + (-0.1 / (1 + IRR) + (-0.5 / (1 + IRR)^{2} + (0.8 / (1 + IRR)^{3} + (1.0 / (1 + IRR)^{4}))$

Excel					
IRR	0	1	2	3	4
4.17%	-1	-0.1	-0.5	0.8	1

=IRR (initial investment, cash flows)

= 4.17%

Professor Chris Droussiotis

<u>Conventions for Quoting Rates of Return:</u> Return on Assets with Regular Cash Flow (Mortgage, bonds – semi-annual coupon)

APR (Annual Percentage Rates) – using simple interest approach

APR = per period rate * Periods per Year

EAR (Effective Annual Rate)

 $1 - EAR = (1 + Rate per period) ^ n = [(1 + (APR/n)) ^n]$

 $APR = (1 + EAR)^{1/n} - 1 * n$

For continuous compounding, 1+EAR=e^APR or APR=ln (1+EAR)

 $EAR = (1+Per period Rate)^{number periods} - 1$

Example:

Suppose we buy T-Bills maturing in one month for \$9,900 (on maturity you collect the Face Value \$10,000).

- HPR = (Cash Income + Price Change) / Initial Price
- HPR = 100/9,900 = 0.0101 = 1.01%
- APR = 1.01% * 12 (annualized) = <u>12.12%</u>
- $EAR \rightarrow 1 + EAR = (1.0101)^{12} = 1.1282$

EAR = 1.1282 - 1 = .1282 = **<u>12.82%</u>**

RISK AND RETURN PREMIUMS

HOW DO WE QUANTIFY RISK?????

Professor Chris Droussiotis

	Scenarios	Probability	HPR	WAHPR (probability*HPR)
Boom Growth	1	0.25	44%	11.00%
Normal Growth	2	0.5	14%	7.00%
Recession Growth	3	0.25	-16%	-4.00%
				14.00%

Scenarios Analysis and Probability Distributions

HOW DO WE QUANTIFY THE UNCERTAINTY OF INVESTMENT???

To summarize risk with a single number we find **VARIANCE**, the expected value of the **squared Deviation for the mean**, first. (I.e. the expected value of the squared "surprise": across scenarios.)

Var. (r) = $\sigma^2 = \sum p(s) [r(s) - E(r))^2$

VARIANCE - DEFINITION

The Variance (which is the square of the standard deviation, ie: σ^2) is defined as:

The average of the squared differences from the Mean.

In other words, follow these steps:

- 1. Work out the <u>Mean</u> (the simple average of the numbers)
- 2. Now, for each number subtract the Mean and then square the result (the squared difference).
- 3. Then work out the average of those squared differences.

- Squaring each difference makes them all positive numbers (to avoid negatives reducing the Variance)

- And it also makes the bigger differences stand out. For example $100^2 = 10,000$ is a lot bigger than $50^2 = 2,500$.

- But squaring them makes the final answer really big, and so un-squaring the Variance (by taking the square root) makes the Standard Deviation a much more useful number.

Variance = Squared Sigma

<u>STANDARD DEVIATION</u> <u>DEFINITION</u>: The Standard Deviation (σ) is a measure of how spreads out numbers are. (Note: Deviation just means how far from the normal). So, using the

Professor Chris Droussiotis

Standard Deviation we have a "standard" way of knowing what is normal, and what is extra large or extra small.

	Scenarios	Probability	HPR	WAHPR (probability*HPR)	Variance [probability*(HPR- sum of WAHPR)^2]
Boom Growth	1	0.25	44%	11.00%	225.00
Normal Growth	2	0.5	14%	7.00%	0.00
Recession Growth	3	0.25	-16%	-4.00%	225.00
				14.00%	450.00
				St. Dev =	21.21%

SD (r) = $\sigma = \sqrt{Var(r)}$

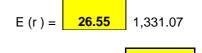
E (r) = (0.25 * 44%) + (0.50 * 14%) + (0.25*-16%) = 14%

Sigma $^2 = 0.25 (44 - 14) ^2 + 0.50 (14 - 14) ^2 + 0.25 (-16 - 14) ^2 = 450$

And so the SD sigma = $\sqrt{450} = \underline{21.21\%}$

EXAMPLE - table 5.2

Current Price=	23.50						
	Scenarios	Probability	End of yr Price	Dividends	HPR %	WAHPR	Variance
			\$	\$			
High Growth	1	0.35	35.00	4.40	67.66	23.68	591.41
			\$	\$			
Normal Growth	2	0.30	27.00	4.00	31.91	9.57	8.62
			\$	\$			
No Growth	3	0.35	15.00	4.00	(19.15)	(6.70)	731.04



StDev = 36.48

HPR = (End of the year Price - Current Price + Div) / (Current Price)

Standard Deviation = Sq Rt of V

Variance = 0.35 * (67.66 - 26.55) ^ 2 + .30 *(31.91 - 26.55) ^ 2 + .35 * (-19.5 - 26.55) ^ 2

Professor Chris Droussiotis

RISK PREMIUM Vs RISK AVERSION (Risk Appetite)

We measure the "Reward" or the difference between the expanded HPR or the Index stock fund and the risk – free rate

HPR – Risk Free Rate = Premium

14% - 6 % = 8%

VOLATILITY vs RETURN – Relationship

Sharpe Ratio:

Risk Premium over the Standard Deviation of portfolio excess return

$E(r p) - r f) / \sigma$

8% / 20% = 0.4x. A higher Sharpe ratio indicates a better reward per unit of volatility, in other words, a more <u>efficient portfolio</u>

Sharpe Ratio is more useful for ranking portfolios - it is not valid for individual assets – is useful across Asset Classes.

HISTORICAL RECORD OF RETURNS - TABLE 5.3 - Panel B

To calculate average returns and standard deviations from historical data, let's compute these statistics for the returns on the S&P 500 portfolio using five years of data from the table (5.4)

Example 5.4

Year	ROR	Deviation from Average Return	Deviation From Avg return Squared (^2)
1	16.90%	0.22%	0.05
2	31.30%	14.62%	213.74
3	-3.20%	-19.88%	395.21
4	30.70%	14.02%	196.56
5	7.70%	-8.98%	80.64
	83.40%		886.21

Professor Chris Droussiotis

observations (n) =	5	
Average ROR =	16.68%	= 83.40 / 5
Var = 886.21 / (5-1) =	221.552	= 886.21 / (5-1)
Standard Deviation=	14.88%	= SQRT 221.552

INFLATION, NOMINAL AND REAL RATES OF RETURN

Nominal Rate of Return (R) = 10%Inflation (i) = 6.0%

r = R - iReal Rate of Return (r) (Approximation) = 4.0%

Real Rate of Return (Exact) = r = (R-i) / (1+i)

Example

Invest in one-year CD for 8.0%. Inflation is 5.0%. Find the approximate and exact Real Rate of Return:

Approximate r = 8.00% - 5.00% = 3.00%Exact r = (8.00% - 5.00%)/(1+5.00%) = 2.86%

EQUILIBRIUM NOMINAL RATE OF INTEREST

Fisher Equation R = r + E (i)Nominal rate ought to increase one for one with increase of expected inflation

ASSET ALLOCATION ACROSS RISKY AND RISK FREE PORTFOLIOS Percentage across

Professor Chris Droussiotis

Total Portfolio =	300,000		
Cash Stocks Total	90,000 210,000 300,000		
Stocks		of total Portfolio	of total Stocks
S&P 500 Index	113,400	37.800%	54.000%
S&P 500 Index Fidelity Invest	113,400 96,600	37.800% 32.200%	54.000% 46.000%
	,	32.200%	

Professor Chris Droussiotis

Portfolio Expected Return and Risk

- + Optimal Risky Portfolio (P)
- + Proportion of the Investment budget (Y) to be allocated to it.
- + The remaining portion (1-Y) is to be invested is the Risk-free Asset (rf)
- + Actual risk rate of return by rp on P by E(rp) and Standard Deviation σ_P
- + The rate on risk-free asset is denoted a rf
- + The portfolio return is E(rc)

E(rp) =	15%
$\sigma =$	22%
Rf =	7%
E(rp)-rf =	8%

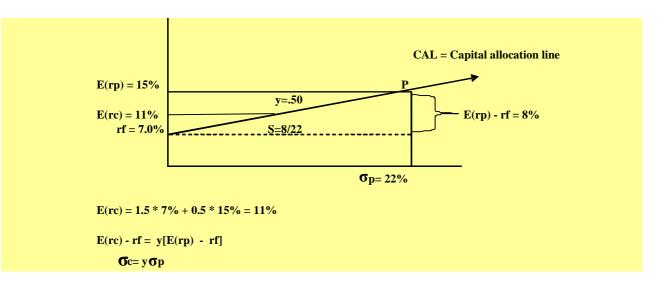
Let's start with two extreme cases

1. If y=1 (all of the portfolio in the risk asset)

E(rp) = 15% $\sigma p = 22\%$

2. If y=0 (none of the portfolio in the risk asset)

rf = 7% $\sigma p = 0\%$



Professor Chris Droussiotis

The Capital Allocation Line (CAL)

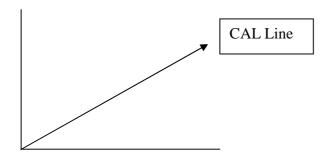
Different values of Y (risky portfolio)

The slope (s) of the CAL equals the increase in expected return that an investor can obtain per unit of additional standard deviation.

THE REWARD-TO-VOLATILITY RATIO (Sharpe Ratio)

	Exp. Return	Risk Premium	Standard Dev.	Sharpe Ratio
Portfolio P.	15%	8%	22%	8/22 = 0.36
Portfolio C.	11%	4%	11%	4/11 = 0.36

Plot on CAL the Sharpe Ratio is the same



Rf = 7% If the investor can borrow at (risk free) rate of rf=7.0%, then he/she can construct a complete portfolio that plot on the CAL line to the right of P where y>1

Example:

Originally have \$300,000 – borrows additional \$120,000 = \$420,000 invested at y risk

This is a levered position in risky assets

y = 420,000 / 300,000 = 1.4x and 1-y= -0.4, reflecting a short position in the risk-free assets – a borrowing position = 7.0%

The portfolio rate of return is

E(rc) = 7 + (1.4 * 8) = 18.2%

Professor Chris Droussiotis

Your income = \$63,000 (15% of \$420,000) and pay \$8,400 (7% of 120,000) interest

\$63,000 - 8,400 = 54,600

54,600 / 300,000 = 18.2%

Sharpe Ratio:

 $\sigma_i = 1.4 * 22 = 30.8$

 $S = (E (ri) - rf) / \sigma i = (18.2 - 7.0) / 30.8 = 11.2 / 30.8 = 0.36$