Lecture #2

REVIEW
- YTM / YTC / YTW – IRR concept
- VOLATILITY Vs RETURN – Relationship

Sharpe Ratio:
Risk Premium over the Standard Deviation of portfolio excess return

\[
\frac{(E(r_p) - r_f)}{\sigma}
\]

8% / 20% = 0.4x. A higher Sharpe ratio indicates a better reward per unit of volatility, in other words, a more efficient portfolio

CONCEPT: EFFICIENT DIVERSIFICATION - MAXIMIZE SHARPE RATIO
How investors can construct the best possible risky portfolio – efficient Diversification

“Diversification reduces the variability of portfolio returns”

DIVERSIFICATION AND PORTFOLIO RISK
From one Bond to two Bonds to three Bonds….. sensitivity to external factors (i.e. oil, non-oils stocks) – But even extensive diversification cannot eliminate risk – MARKET RISK

ASSET ALLOCATION
Asset allocation between 2 risky assets

COVARIANCE AND CORRELATION
Relationship between the return of two assets
1. Tandem: Depends on the Correlation between the two returns
DEBT & FIXED INCOME
Prof. C. Droussiotis

2. Opposition

Use the Economic Scenarios between two asset classes (Stocks and Bonds)

PERFORMANCE SCENARIOS

<table>
<thead>
<tr>
<th>Scenario (S)</th>
<th>Probability (p)</th>
<th>Stocks (s)</th>
<th>Bonds (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ROR % (rs)</td>
<td>Deviation for Exp. Ret. (Dev.)</td>
</tr>
<tr>
<td>Recess (Sr)</td>
<td>30.0%</td>
<td>-11.00</td>
<td>-3.30</td>
</tr>
<tr>
<td>Normal (Sn)</td>
<td>40.0%</td>
<td>13.00</td>
<td>5.20</td>
</tr>
<tr>
<td>Boom (Sb)</td>
<td>30.0%</td>
<td>27.00</td>
<td>8.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.0%</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

Variance= 222.60 SD= 14.92%

PORTFOLIO ANALYSIS (Asset Allocation)

<table>
<thead>
<tr>
<th>Asset Allocation</th>
<th>Stocks (As) = 60%</th>
<th>Bonds (Ab) = 40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario (S)</td>
<td>Probability (p)</td>
<td>Stocks (s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ROR % (rs)</td>
</tr>
<tr>
<td>Recess (Sr)</td>
<td>30.0%</td>
<td>-0.2</td>
</tr>
<tr>
<td>Normal (Sn)</td>
<td>40.0%</td>
<td>10.2</td>
</tr>
<tr>
<td>Boom (Sb)</td>
<td>30.0%</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td>100.0%</td>
<td>8.40%</td>
</tr>
</tbody>
</table>

Variance= 35.02 SD= 5.92%

COVARIANCE & CORRELATION

<table>
<thead>
<tr>
<th>Scenario (S)</th>
<th>Probability (p)</th>
<th>Stocks (s)</th>
<th>Bonds (b)</th>
<th>Covariance (p* Db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recess (Sr)</td>
<td>30.0%</td>
<td>-21.00</td>
<td>10.00</td>
<td>-210.00</td>
</tr>
<tr>
<td>Normal (Sn)</td>
<td>40.0%</td>
<td>3.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Boom (Sb)</td>
<td>30.0%</td>
<td>17.00</td>
<td>-10.00</td>
<td>-170.00</td>
</tr>
<tr>
<td></td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Covariance= -114.00 Correlation Coefficient = -0.99

The Covariance is calculated in a manner similar to the Variance. Instead of measuring the typical difference of an asset return from its expected value.

Instead measure the extent to which the variation in the returns of the two assets tend to reinforce or offset each other.
DEBT & FIXED INCOME
Prof. C. Droussiotis

COVARIANCE

\[
\text{Cov} (rs, rb) = \sum p(i) [rs(i) - \text{avg rs}] [rb(i) - \text{Avg rb}]
\]

Rs = return on the stock
Rb = return on the bond
P(i) = expected portfolio return

CORRELATION COEFFICIENT

\[
P_{sb} = \frac{\text{Cov} (rs, rb)}{\sigma_s \cdot \sigma_b}
\]

Psb = portfolio of Stocks and bonds
\(\sigma_s\) = Standard Deviation of s
\(\sigma_b\) = Standard Deviation of b

THE 3 RULES OF TWO-RISKY ASSET PORTFOLIOS

Rule 1: ROR of the portfolio is weighted average of the returns

\[
r_p = W_b \cdot r_b + W_s \cdot r_s
\]

Rule 2: Expected ROR or the portfolio

\[
E(r_p) = W_b \cdot E(r_b) + W_s \cdot E(r_s)
\]

Rule 3: Variance of ROR or two-risky asset portfolio.

\[
\sigma_p^2 = (W_b \sigma_b)^2 + (W_s \sigma_s)^2 + 2 (W_b \sigma_b) (W_s \sigma_s) \cdot P_{bs}
\]

Pbs is the correlation between the return on stock and bonds
Example: 100% Bonds, then decide to shift to 50% of bonds and 50% of stock

Input Data:

\[E(rb) = 6.0\% \]
\[E(rs) = 10\% \]
\[\sigma_b = 12\% \]
\[\sigma_s = 25\% \]
\[P_{bs} = 0 \]
\[W_b = 0.5 \]
\[W_s = 0.5 \]

If we averaged the 2 standard deviations of each asset class we will have incorrectly predicted an increase in the portfolio’s SD \((25 + 12)/2 = 18.5\%\) showing an increase of 6.5\% when moving from all bond portfolio to half/half bond/stock. The actuality is that the SD movement is much lower to 13.87\% (as is calculated above) or 1.87\% from all bond portfolio SD of 12.0\% - SO THE GAIN OF DIVERSIFICATION CAN BE SEEN AS FULL 6.50 – 1.87 = 4.62\%.

\[
\sigma_p^2 = (0.5*12)^2 + (0.5*25)^2 + 2(0.5*12)(0.5*25)*0
\]
\[
\sigma_p = \text{SqRt of } 192.25 = 13.87\%
\]

If weights 0.75 and 0.25 then \((0.75*6) + (0.25*10) = 7.0\% \text{ expected returns}\)

\[
\text{Variance} = (0.75*12)^2 + (0.25*25)^2 + 2(0.75*12)(0.25*25)*0
\]

\[
\text{SqRt of } 120 = 10.96\%
\]

Check page 159 – Graph and Table at rs=10, rb=6, \(\sigma_s=25\), \(\sigma_b=12\) at different weights
DEBT & FIXED INCOME

Prof. C. Droussiotis

Parameters

- \(E(\text{rs}) = 10 \)
- \(E(\text{rb}) = 6 \)
- \(\sigma_s = 25 \)
- \(\sigma_b = 12 \)
- \(P_{sb} = 0 \)

<table>
<thead>
<tr>
<th>Portfolio Weights</th>
<th>Exp Return</th>
<th>Std Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_s)</td>
<td>(W_b)</td>
<td>(E(r_p)) %</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>6.00</td>
</tr>
<tr>
<td>0.1</td>
<td>0.9</td>
<td>6.40</td>
</tr>
<tr>
<td>0.2</td>
<td>0.8</td>
<td>6.80</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>7.20</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>7.60</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>8.00</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
<td>8.40</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>8.80</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2</td>
<td>9.20</td>
</tr>
<tr>
<td>0.9</td>
<td>0.1</td>
<td>9.60</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>10.00</td>
</tr>
</tbody>
</table>

Minimum Variance

- Stocks: 18.7256%
- Bonds: 81.2744%

Minimum Variance equation:

\[
W_s = \frac{(\sigma_b^2 - \sigma_b \sigma_s p)}{(\sigma_s^2 + \sigma_b^2 - 2*\sigma_b \sigma_s p)}
\]

\[
W_b = 1 - W_s
\]

E(\(r \)) Vs Std Dev with 0 correlation

Graph showing the relationship between expected return (\(E(\text{r}) \)) and standard deviation (Std Dev) for different portfolio weights.

- 100% Stocks: 18.73%
- 100% Bonds: 81.27%
The Mean – Variance Criterion

Investors Desire portfolios to lie to the Northwest (Graph) – with higher return and lower Standard Deviation (Risk)

Let’s assume Portfolio A is said to dominate portfolio B if all investors prefer A over B. This will be the case that has the highest Return and lowest Variance

\[E(r_A) \geq E(r_B) \text{ and } \sigma_A \leq \sigma_B \]

If we graph the relationship PA will be to the Northwest of PB

WHAT ARE THE IMPLICATIONS OF PERFECT POSITIVE CORRELATION BETWEEN BONDS & STOCKS??

Let’s say the correlation is 1 or \(P_{bs} = 1 \) (so far we used 0 correlation)

\[P_{bs} = 1 \]

\[\sigma^2 = W_b^2 \sigma_b^2 + W_s^2 \sigma_s^2 + 2 W_b \sigma_b W_s \sigma_s \]

so if \(P_b = 1 \) then \(\sigma_p = W_b \sigma_b + W_s \sigma_s \)

we learned if

\[P_b = 0 \text{ then } \sigma_p = \sqrt{(W_b \sigma_b)^2 + (W_s \sigma_s)^2} \]

Example we were using \((\sigma_s = 25, \sigma_b = 12)\)

\[\sigma_p = (0.50 \times 12) + (0.50 \times 25) = 18.75\% \quad \ldots \text{If } P_{bs} = 1, \text{ straight average – No gain for diversification, where } P_{bs} = 0 \text{ we calculated previously that the } \sigma_p = 13.87\%. \]
Graph of Pbs = 1 and Pbs = 0 and in between

With Correlation = 1

<table>
<thead>
<tr>
<th>Portfolio Weights</th>
<th>Std Dev.</th>
<th>Exp Return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σp %</td>
<td>E(rp) %</td>
</tr>
<tr>
<td>Ws</td>
<td>Wb</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>12.00</td>
</tr>
<tr>
<td>0.1</td>
<td>0.9</td>
<td>13.30</td>
</tr>
<tr>
<td>0.2</td>
<td>0.8</td>
<td>14.60</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>15.90</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>17.20</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>18.50</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
<td>19.80</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>21.10</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2</td>
<td>22.40</td>
</tr>
<tr>
<td>0.9</td>
<td>0.1</td>
<td>23.70</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>25.00</td>
</tr>
</tbody>
</table>

E (rp) Vs Std Dev. With correlation of 1

Use Extreme Example where Pbs = -1

σp^2 = (Wb.σb – Ws.σs)^2

or σp = ABS Wb.σb – Ws.σs

(using ABS or absolute because there is no negative standard deviation)
using our example = .50*12 - .50*25 = Abs 6.5%

With Correlation = -1

\[\text{PsB} = -1 \]

<table>
<thead>
<tr>
<th>Portfolio Weights</th>
<th>Std Dev.</th>
<th>Exp Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_s)</td>
<td>(W_b)</td>
<td>(\sigma_p %)</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>12.00</td>
</tr>
<tr>
<td>0.1</td>
<td>0.9</td>
<td>8.30</td>
</tr>
<tr>
<td>0.2</td>
<td>0.8</td>
<td>4.60</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>0.90</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>2.80</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>6.50</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
<td>10.20</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>13.90</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2</td>
<td>17.60</td>
</tr>
<tr>
<td>0.9</td>
<td>0.1</td>
<td>21.30</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>25.00</td>
</tr>
</tbody>
</table>

THE OPTIMAL RISKY PORTFOLIO W A RISK-FREE ASSET

Let’s add Risk Free in our portfolio (bringing what we discussed before regarding CAL line)

T-Bills = 5.0% (risk free)

Historical Correlation between Bonds and Stocks is 0.20

GRAPH introducing the CAL in our previous Graph of Bonds and Stock
Using the minimum (point A) on a .20 correlation between bonds and stock. We were given the minimum weights at \(W_b = 87.06\% \) and \(W_s = 12.94\% \) so PA expects to return 6.52\% and \(\sigma_A \) is 11.54\% calculated as follows:

\[
 r_A = (0.8706 \times 6) + (0.1294 \times 10) = 6.52
\]

\[
 \sigma_A = \sqrt{(0.8706 \times 12)^2 + (0.1294 \times 25)^2} = 11.54\%
\]

Sharpe Ratio is \(S_A = \frac{(E(r_A) - r_f)}{\sigma_A} = \frac{(6.52 - 5)}{11.54} = 0.13 \)

Now consider the CAL uses portfolio B instead of A. Portfolio B consists of 80\% Bonds and 20\% Stock, then \(r_{bs} = 6.80\% \), \(\sigma_{bs} = 11.68\% \) then,

\[
 S_B = \frac{(6.80 - 5)}{11.68} = 0.15
\]

\(S_B - S_A = 0.02 \)

This implies that portfolio B provides 2 extra basis points (0.02\%) of expected return for every percentage point (1.0\%) increased in Standard Deviation (Risk).

The higher Sharpe Ratio of B means that its capital allocation line (CAL) it’s steeper than A, therefore, CAL(B) plots above CAL(A).

In other words, combination of portfolio B and the risk-free asset provide a higher expected return for any level of risk (SD) than combination of portfolio A and the risk free asset.

GOAL = CAL NEED TO REACH TANGENCY (GRAPH) FOR OPTICAL RISKY PORTFOLIO

Graph 6.6, page 166

Solution for maximizing of the Sharpe Ratio:

\[
 W_b = \frac{[(E(r_b) - r_f)\sigma_s^2 - (E(r_s) - r_f)\sigma_b\sigma_sP_{bs}]}{[(E(r_b) - r_f)\sigma_s^2 + (E(r_s) - r_f)\sigma_b^2 - r_f + E(r_s) - r_f\sigma_b\sigma_sP_{bs}]}
\]

\(W_s = 1 - W_b \)

BUILDING A PORTFOLIO WITH RISK FREE, STOCK, AND BONDS
Assume we want to invest 45% of our portfolio in Risk Free assets = 55% is in a risky portfolio between bonds (50%) and stocks (50%),

We find the CAL with our optimal portfolio (o) in a slope – Lets say:

Pro = 8.68% and σ0=17.97%, Wb = 32.99% and Ws = 67.01% from the long formula above.

So = 8.68 – 5 / 17.97 = 0.20

E(rc) = 5 + 0.55 *(8.68 – 5) = 7.02%
σc = 0.55 * 17.97 = 9.88%

Wrf = 45%
Wb = 0.3299 * .55 = 18.14%
Ws = 0.6701 * .55 = 36.86%
THE EFFICIENT FRONTIER OF RISKY ASSETS

3 STEPS:

STEP 1:
Identify the best possible or most efficient risk-return combination available from the universe of risky assets (Plot them on Return/Standard Deviation Graph)

Expected Return – SD combination for any individual asset end-up inside the efficient frontier, because single-asset portfolios are inefficient (are not efficiently diversified)

E(pr) Vs Std Dev with 0 correlation

STEP 2:
Determine the optimal portfolio of risky assets by finding the portfolio that supports the steepest CAL (Risky free return introduced)

Risky free assets – using the current Risk Free Rate, we search for CAL with the highest Sharpe Ratio
STEP 3:
Choose an appropriate complete portfolio based on the investors risk appetite (risk aversion) by mixing the Rf Asset with the optimal risky portfolio.

Choose the appropriate optimal risky portfolio (o) above T-bills – Separation Property step - RISK AVERSE comes in play in this step – when selected the desire point of the CAL. More risk averse clients will invest in the risk-free asset and less in the optimal risky portfolio O.