Chapter 17

"An Analytical Approach to
Investments, Finance and Credit"

Valuation Analysis

Valuation Analysis Overview

- The chapter will introduce the following eight methods of valuating the company's enterprise value:
- Method 1: Using the current stock price as a basis of valuation
- Method 2: Intrinsic value and capital asset pricing model (CAPM)
- Method 3: Dividend discount model (DDM)
- Method 4: Comparable method using trading EBITDA multiples
- Method 5: Comparable method using acquisition EBITDA multiples
- Method 6: Discount cash flow method (DCF)
- Method 7: Leveraged buyout private equity expectation model (LBO)
- Method 8: Black-Scholes option pricing model

Valuation of Publicly Traded Companies.

Testing the current Stock Price

Valuation Analysis - Case Study

Hyatt Hotels Corporation				
corporate valuations				

Methods 1-6: Valuation of Public Traded Companies

- Method 1: Using the Stock Price as the Basis of Valuation
- The formula to value the firm or the enterprise value (EV) is as follows:

$$
E V=M V E+D-C
$$

where EV is enterprise value, MVE is the market value of the equity, D is the total debt outstanding, and C is the cash and cash equivalents of the company.

- The stock price that represents the market value of each share when multiplied by the shares outstanding will give us the market value of the equity.
MVE = (SP . SO)
where MVE is the market value of the equity, SP is the stock price and SO is the shares outstanding.

Methods 1-6: Valuation of Public Traded Companies

Method 1: Using the Stock Price as the Basis of Valuation

Hyatt Hotels Corporation

CORPORATE VALUATIONS
METHOD \#1 - Market Value / Using the Stock Price

Calculations \longrightarrow		SP	So	SP * SO = EQ	D	c	$E Q+D-C=E V$
Company	Symbol	$\begin{aligned} & \text { Stock Price } \\ & \text { (as of } \\ & 2 / 28 / 2020 \text {) } \\ & \hline \end{aligned}$	Stocks Outstanding (\$000)	Equity Value (\$000)	$\begin{gathered} \text { Debt (ST\<) } \\ 12 / 31 / 2019 \\ (\$ 000) \\ \hline \end{gathered}$	$\begin{gathered} \text { Cash } \\ 12 / 31 / 2019 \\ (\$ 000) \\ \hline \end{gathered}$	Enterprise Value (\$000)
Hyatt	H	\$ 76.23	102,060	7,780,000	1,612,000	961,000	8,431,000

Methods 1-6: Valuation of Public Traded Companies

- Method 2: Intrinsic Value and CAPM

The expected return is calculated by applying the capital asset pricing model (CAPM):

$$
\mathrm{E}_{\mathrm{r}}=\mathbf{R} \mathrm{f}_{\mathrm{r}}+\beta\left(\mathrm{M}_{\mathrm{r}}-\mathrm{Rf}_{\mathrm{r}}\right)
$$

where E_{r} is the expected return, $R f_{r}$ is the risk-free rate, β is the beta of the company that is analyzed, and M_{r} is market return.

The formula for today's intrinsic value is

$$
v_{0}=\frac{D_{1}+\rho_{1}}{1+k}
$$

where D_{1} is the dividend expected to receive within a year, P_{1} is the expected stock price a year from now, and k is the discount rate or expected rate of return.

Methods 1-6: Valuation of Public Traded Companies

- Method 2: Intrinsic Value and CAPM

Hyatt Hotels Corporation CORPORATE VALUATIONS			
METHOD \#2- Intrinsic Value			
Using CAPM $=\mathrm{k}=\mathrm{Rf}+$ (Beta * Premium)	Intrinsic Value $=$ V $0=[\mathrm{E}(\mathrm{D} 1)+\mathrm{E}(\mathrm{P} 1)] /(1+\mathrm{k})$		
Risk Free $=1.50 \%$	D1=	\$0.76	
Beta $=\quad 1.11 \mathrm{x}$	Analyst Est.	\$1.25	(Average Earnings per share)
Premium= 9.00\%	PE Multiple	18.98x	
Market Return (Rf+ Premium)= 10.50\%	$\begin{aligned} & \operatorname{Exp}(\mathrm{P} 1)= \\ & \mathrm{k}= \end{aligned}$	$\begin{array}{r} \$ 90.00 \\ 11.5 \% \end{array}$	(Avg Target by Analysts for $9 / 19$)
RoR $=\quad 11.5 \%$	$\mathrm{V} 0=$	\$ 81.41	

Methods 1-6: Valuation of Public Traded Companies

- Method 3: Dividend Discount Model (DDM)

To calculate such value using the DDM method, the analyst needs the expected price of the stock a year from the date of the analysis, the expected dividend per share paid within the year, and a discount rate, which derived using the capital asset pricing model (CAPM).

$$
\mathrm{V}=\frac{\mathrm{D} 1}{\mathrm{k}-\mathrm{g}}
$$

where D_{1} is the expected dividend, k is the discount rate, and g is the expected growth rate.

Methods 1-6: Valuation of Public Traded Companies

- Method 3: Dividend Discount Model (DDM)

$\underset{\text { corporte valuations }}{\text { Hyatt }}$ Hotels Corporation
 corporate valuations

METHOD \#3- Dividend Discount Model (DDM)

Constant-Growth DDM (Gordon Model) V0 $=$ D1 / (k-g)			Expected HPR $=\mathrm{E} 9 \mathrm{r})=[\mathrm{E}(\mathrm{d} 1)+(E(p 1)-\mathrm{P} 0) / \mathrm{P} 0$		
D1 =		\$0.76	Dividend (d1)	\$0.76	(Nogrowth)
Expected Equity Return (k)=		11.49\%	P1 = P0+D	\$76.99	
Expected Growth (g @90\% of Return) =		10.34\% historical	P0	\$ 76.23	
$\mathrm{V} 0=$	\$	72.98	Exp. HPR=	1.99\%	

Methods 1-6: Valuation of Public Traded Companies

- Method 4: Using Comparable Trading EBITDA Multiples

Hyatt Hotels Corporation
 CORPORATE VALUATIONS

METHOD \#4 -Average EBITDA Industry Trading Multiples

			SP	So	SP * SO = EQ	D	C	2+D-C = 呠	E	EV/E	
Company	Symbol	Stock Price (as of $2 / 28 / 2020)$		\qquad	Equity Value (\$000)	$\begin{gathered} \text { Debt } \\ \text { (ST\<) } \\ (\$ 000) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Cash } \\ & (\$ 000) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Enterpris } \\ \text { e Value } \\ (\$ 000) \\ \hline \end{array}$	EBITDA $(\$ \mathrm{~mm})$	EBITDA Multiple	Beta
Choice Hotels International	СНн	\$	92.29	55,730	5,143,322	872,880	33,770	5,982,432	371,170	16.12x	0.96x
Hilton Worldwide Holdings Inc.	HLT	\$	95.71	286,860	27,455,371	9,160,000	538,000	36,077,371	1,910,000	18.89x	1.07x
Intercontinental Hotel	IHG	\$	55.13	182,030	10,035,314	2,840,000	199,000	12,676,314	925,000	13.70x	0.92x
Marcus Corporation	MCS	\$	26.72	22,990	614,293	486,360	26,690	1,073,963	141,700	7.58x	0.53x
Marriott International	MAR	\$	124.00	326,940	40,540,560	11,950,000	225,000	52,265,560	2,520,000	20.74x	1.28x
Park Hotels \& Resorts Inc.	PK	\$	18.26	239,390	4,371,261	4,130,000	346,000	8,155,261	649,330	12.56x	1.41x
Wyndham Worldwide	WH	\$	50.95	96,430	4,913,109	2,160,000	94,000	6,979,109	573,000	12.18x	1.81x
Hyatt	H	\$	76.23	102,060	7,780,000	1,612,000	961,000	8,431,000	585,000	14.41x	1.11x
EBITDA * Average Multiple	585,000		14.69x						Average	14.54x	1.14x
									Outliers	14.69x	
Hyatt's Enteprise Value	8,593,652										
Less Debt	(1,612,000)										
Plus Cash	961,000										
Equity Value	7,942,652										
Shares Outstanding	102,060										
Value per Share	77.82										

Methods 1-6: Valuation of Public Traded Companies

- Method 5: Using Comparable Acquisition EBITDA Multiples

METHOD \#5 - Using Averge EBITDA Transaction Multiples (M\&A Comparable Method)

Methods 1-6: Valuation of Public Traded Companies

- Method 6: Using the Discount Cash Flow Method (DCF)
- To value the company using the DCF method the analyst needs to derive the following four items:
- Setting up a stream of cash flows
- Identifying an exit year
- Calculating the value at exit year (terminal value)
- Using the appropriate discount rate to value the present value of the firm

Methods 1-6: Valuation of Public Traded Companies

Method 7: Using the Leveraged Buyout Model (LBO) Method

- While the DCF analysis is used for determining today's value of the company based on future cash flows, the value of the company using this LBO method is determined based on investor expectation, which means return determines the acquisition price of the firm.
- Building the Transactions Sources and Uses
- Setting up the Debt Schedules
- Calculating the Expected Equity Return
- Running Projections
- Determining the Terminal Value
- Determining the Value of the Firm

Method 7: Using the Leveraged Buyout Model (LBO) Method

Hyatt Hotels Corporation

corporate valuations
MEIHOD *7 - Leveraged Buyout (LBO) Analysis

Method 7: Using the Leveraged Buyout Model (LBO) Method

Hyatt Hotels Corporation

METHOD \#7 - Leveraged Buyout (LBO) Analysis

Methods 1-7-Summary:

Putting All the Values Together

ENTERPRISE VALUATION ANALYSIS

	EV	Debt	Cash	Eq Value	Shares Outs	Stock Price		H/L \%
Book Value Equity	4,613,000	1,612,000	961,000	3,962,000	102,060	\$	38.82	
METHOD \#1 - Market Value / Using the Stock Price	8,431,000	1,612,000	961,000	7,780,000	102,060	\$	76.23	
METHOD \#2-Intrinsic Value	8,959,302	1,612,000	961,000	8,308,302	102,060	\$	81.41	6.8\%
METHOD \#3- Dividend Discount Model (DDM)	8,099,763	1,612,000	961,000	7,448,763	102,060	\$	72.98	-4.3\%
METHOD \#4 -Average EBITDA Industry Trading Multiples	8,593,652	1,612,000	961,000	7,942,652	102,060	\$	77.82	2.1\%
METHOD \#5 - Using Averge EBITDA Transaction Multiples	7,714,862	1,612,000	961,000	7,063,862	102,060	\$	69.21	-9.2\%
METHOD \#6 - Discount Cash Flow Valuation Analysis	9,952,977	1,612,000	961,000	9,301,977	102,060	\$	91.14	19.6\%
METHOD \#7 - LBO Analysis	9,305,259	1,612,000	961,000	8,654,259	102,060	\$	84.80	11.2\%
Average of other methods	8,770,969	1,612,000	961,000	8,119,969	102,060	\$	79.56	4.4\%

Valuation of Private Companies

 Applying methods 6-8
Method 6: Discount Cash Flow Method (DCF)

- One of the most effective ways to value a private company is to dive into the company's projections and change the assumptions based on the investor's view of how the revenue will grow and at what cost.
- Since there is no stock price that trades, which gives the investor a direct indication of what the company is worth (market value), an important method used by professionals is the discount cash flow (DCF) method, which measures the company's intrinsic value.
- The conduction of this method is to calculate the first the equity cash flows, identify the exit year, estimate the terminal value in the exit year, and use the expected equity return as the discount rate.

Valuation Analysis - Celerity Technology Inc

Celerity Technogy Inc. ("CTI") Discount Cash Flow Valuation Method (000's)							
	Year-1	Year 0	PROJECTED				
						EXIT YEAR Year 4	Year 5
			Year 1	Year 2	Year 3		
Revenues	960,000	1,110,000	1,228,140	1,344,200	1,442,919	1,529,268	1,605,161
Cost of Revenues	$(345,000)$	$(420,000)$	$(463,078)$	$(506,823)$	$(544,053)$	$(576,709)$	$(605,474)$
Operating Expenses	$(230,000)$	$(257,000)$	$(271,501)$	$(289,448)$	$(306,442)$	$(322,900)$	$(338,999)$
EBITDA	385,000	433,000	493,561	547,928	592,424	629,659	660,688
Less Depreciation \& Amortization	$(60,000)$	$(65,000)$	$(73,688)$	$(80,652)$	$(86,575)$	$(91,756)$	$(96,310)$
EBIT	325,000	368,000	419,872	467,276	505,849	537,902	564,378
Less Taxes			$(129,769)$	$(147,070)$	$(156,960)$	$(158,461)$	$(162,851)$
EAT			290,103	320,206	348,889	379,441	401,527
Plus Depreciation \& Amortization			73,688	80,652	86,575	91,756	96,310
Less Working Capital			2,870	$(4,548)$	$(3,869)$	$(3,384)$	$(2,974)$
Less Capital Expenditures and Investments			$(193,626)$	$(211,923)$	$(227,487)$	$(241,101)$	$(253,066)$
Cash Before Financing Payments			173,036	184,386	204,109	226,713	241,796
Less Debt Service (Principal + Interest)			$(125,450)$	$(129,600)$	$(153,450)$	$(201,750)$	$(237,250)$
Free Cash Flow			47,586	54,786	50,659	24,963	4,546
TERMINAL VALUE (TV)	TV Assumptions						
Terminal Value using EBITDA Multiple Method		A Multiple $=7.5 \mathrm{x}$				4,722,439	
Terminal Value using Perpetuity Method		count Rate $=10 \%$				4,835,926	
Average Terminal Value		Growth $=5 \%$				4,779,182	
Less Debt						$(1,030,000)$	
Equity Value at Exit Year						3,749,182	
Equity Cash Flows	Equity Exp	Return $=20 \%$	47,586	54,786	50,659	3,774,145	
Present Value of Equity		1,927,111	39,655	38,046	29,316	1,820,093	
Plus Debt		1,190,000					
Less Cash		$(65,800)$					
Firm Enterprise value		3,051,311					
Enteprise Value / EBITDA		7.0x					

Method 7: Leveraged Buyout (LBO) Method for Private Companies

Method 8: Valuation of Distress Firms

- Option Pricing Model Framework

- In option pricing and specifically in call options the payoff formula or intrinsic value of the option is Option payoff $=\operatorname{Max}(0, S-X)$
where S is the stock price and X is the exercise price.
- To calculate the enterprise value

$$
E V=E+D-C \text { or } E V=E+n e t D
$$

where EV is the enterprise value of the firm, E is the equity value, D is the debt and C is cash. The net D is referred to as debt minus cash implied that the current debt could be paid with cash on hand.

- Solving for equity:

$$
\mathrm{E}=\mathrm{EV}-\text { net } \mathrm{D}
$$

where E is the equity, $E V$ is the enterprise value and net D is the net debt.

Method 8: Valuation of Distress Firms

- Option Pricing Model Framework

The Black-Scholes formula is

$$
\text { C option payoff }=\mathrm{Se}^{-\delta \cdot \mathrm{t}} \cdot \mathrm{~N}(\mathrm{~d} 1)-\mathrm{Xe}^{-\mathrm{i} \cdot \mathrm{t}} \cdot \mathrm{~N}(\mathrm{~d} 2)
$$

where S is the stock price, δ is the dividend yield, t is time until expiration, X is the option exercise price, i is the risk-free interest rate, and N is the normal distribution.

$$
\mathrm{d} 1=\frac{\left[\ln \left(\frac{\mathrm{S}}{\mathrm{x}}\right)+\left(\mathrm{i}-\delta+\frac{\sigma^{2}}{2}\right) \cdot \mathrm{t}\right]}{\sigma \sqrt{\mathrm{t}}} \text { and d2=d1-ov} \mathrm{t}
$$

where S is the current stock price, X is the contractual exercise price, i is the riskfree interest rate, δ is the dividend yield, σ is the standard deviation, and t is time to expiration.

Method 8: Valuation of Distress Firms

Input:

- $\mathrm{S}=$ Value of the firm = \$1 billion
- X=Exercise price = debt value = \$1,200 million
- $\sigma=$ Standard deviation of the asset $=20 \%$
- $\mathrm{t}=$ Time $=$ term of the bond $=5$ years
- $\mathrm{i}=$ Risk-free rate $=3 \%$
- $\delta=$ Dividends = cash flow paying the equity = \$0
- $\mathrm{C}=$ Equity value $=\mathrm{E}=$?

Formulas and output:

Using the formula to determine the deviations d 1 and d 2 :
$d 1=\frac{\left[\ln \left(\frac{S}{x}\right)+\left(i-\delta+\frac{\sigma^{2}}{2}\right) \cdot t\right]}{\sigma \sqrt{ } t}$ and $d 2=d 1-\sigma \sqrt{ } t$
$d 1=.7671$ and $N(d 1)=.7785$
$d 2=.5678$ and $N(d 2)=.7149$
Using the Black Sholes formula:

$$
\begin{gathered}
C=S e^{-\delta . t} \cdot N(d 1)-X e^{-i . t} \cdot N(d 2) \\
C=\$ 152.0 \text { million }
\end{gathered}
$$

Valuation Analysis of Distress Company - AB Air Co.

- AB Air Co., an airline company that entered bankruptcy in 1990. At the time of the filing, the debt outstanding, representing the exercise price X, was at $\$ 600$ million with a remaining life or duration of 5 years. To establish the value of equity, the enterprise value needs to be calculated. The management put together a business plan including 5 years of projections. In the first year, the company is planning to spend more money, representing restructuring costs and downsizing. Based on the 5 years' projection, the equity analyst could calculate the present value of the future cash flows, an estimated terminal value, and an assumed discount rate using the weighted average cost of capital of 10.5%.
- The DCF analysis yields an enterprise value or the value of S of $\$ 934$ million. Obviously with $\mathrm{S}=\$ 934$ million and $X=\$ 600$ million the equity is in the money. Using the Black-Scholes option pricing model the equity or the call option C is calculated at $\$ 575$ million after taking into consideration the combined variance for both debt and equity using the following formula:

$$
\sigma s b^{2}=s^{2} \cdot \sigma s^{2}+b^{2} \cdot \sigma b^{2}+2(W s \cdot W b \cdot \sigma s \cdot \sigma b) \cdot \rho
$$

where $\sigma s b^{2}$ is the combined variance of bonds and stocks, W s is the percentage of stocks to total capitalization, σs^{2} is the stock price variance prior to bankruptcy, $W b$ is the bond outstanding as percentage of total capitalization, σb^{2} is the bond price variance prior to bankruptcy, and ρ is the correlation between the stock and bond prices.

Valuation Analysis of Distress Company - AB Air Co.

CASE STUDY: AB Air CO.
 File for Bankruptcy 1990

DEBTASSUMPTIONS	
Debt Outstanding $=$	600
Weighted Average Duration=	5 years
Weighted Average maturity=	8.7 years
WACC=	10.0%
TaxRate $=$	36.0%

VALUE ASSUMPTIONS (Pre-bankrupcy) Stock Montly Var. (1985-1990) = Bonds Monthly Var. (1985-1990) $=$
$\begin{array}{lr}\text { Bonds Monthly Var. }(1985-1990)= & 2.16 \% \\ \text { Correlation between Stock/Bond } & 0.25 \\ \text { Debt proportion }(1987-1991)= & 88.30 \%\end{array}$ 36.0\%
88.30\%

Discount Cash Flow Analysis (\$ millions)
Revenue
Reven
Oper. Exp
EBIT
EBIT (t)
EBIT (i-t)

1991	1992	1993	1994	1995
$1,250.0$	$1,137.5$	$1,114.8$	$1,159.3$	$1,205.7$
(980.0)	(810.0)	(668.0)	(695.6)	(723.4)
(720.0)	(210.0)	(205.8)	(214.0)	(222.6)
(450.0)	117.5	241.0	249.7	259.7
(162.0)	42.3	86.8	89.9	93.5

ess Maintenance Capex (offset by Depreciation) Less W/C (assumiung \$0)
Cash Flow
EV (PV) of the firm

	-	-	-	-	-
	(288.0)	75.2	154.2	159.8	166.2
$5.0 \times$					1,298.5
\$934.8	(288.0)	75.2	154.2	159.8	1,464.7

Step 1 - Find the annualized in stock and bond prices:
$\begin{array}{ll}\text { Annualized Variance in Stock Price } 0 \wedge 2= & 0.37812 \text { (annual) } \\ \text { Annualized Variance in Bond Price } \sigma^{\wedge 2}= & 0.2592 \text { (annual) }\end{array}$
0.2592 (annual)

St. Dev. $=$
0.6149146
0.5091169

Step 2 - Find the annualized variance in firm value

Wan
Annualized Variance in firm value 0.211314
The five-year bond rate (corresponding to the weighted average duration of 5.1 years) is 6.0%
Stet 3 - Find the value of call based upon the following parameters of equity as a call option
Value of the underlying asset $=s=$ Value of the firm $=$
Exercise Price $=x=$ Face Value of outstanding debt $=$
Exercise Price $=x=$ Face Value of outstanding debt $=$
Life of the option $=t=$ Weighted average duration of debt $=$
Variance in the value of the underlying asset $=0^{\wedge} 2=$ Riskless Rate $=1=T$-Bond for option life $=$
$\$ 934.8$
$\$ 600.0$
0.2113143
$\mathrm{d} 1=1.23721 \quad \mathrm{~N}(\mathrm{~d} 1)=0.8919954$ $\mathrm{d} 2=0.209313 \quad \mathrm{~N}(\mathrm{~d} 1)=0.8919954$

Value of the call (Equity) $=574.5364$

