

Mergers \& Acquisitions

LECTURE 5: CORPORATE VALUATIONS

CASE STUDY 1: HYATT CORPORATION (PUBLIC TRADED COMPANY) CASE STUDY 2: CELERITY TECHNOLOGY COMPANY (PRIVATE)

CASE STUDY 3: ABC AIR (DISTRESS COMPANY)

Valuation Analysis Overview

METHOD	DESCRIPTION	TYPE	TECHNICAL/ FUNDAMENTAL
1	Using the current stock price as a basis of valuation	Market	Technical
2	Intrinsic value and Capital Asset Pricing Model (CAPM)	Market	Technical
3	Dividend Discount Model (DDM)	Market	Technical
4	Comparable method using trading EBITDA multiples	Market	Fundamental
5	Comparable method using acquisition EBITDA multiples	Market	Fundamental
6	Discount cash flow method (DCF)	Income	Fundamental
7	Leveraged buyout private equity expectation model (LBO)	Income	Fundamental
8	Black-Scholes option pricing model	Options	Fundamental

Valuation of Publicly Traded Companies.

Testing the current Stock Price

Methods 1-6: Valuation of Public Traded Companies

Method 1: Using the Stock Price as the Basis of Valuation

- The formula to value the firm or the enterprise value (EV) is as follows:

$$
E V=M V E+D-C
$$

where EV is enterprise value, MVE is the market value of the equity, D is the total debt outstanding, and C is the cash and cash equivalents of the company.

- The stock price that represents the market value of each share when multiplied by the shares outstanding will give us the market value of the equity.
MVE = (SP . SO)
where MVE is the market value of the equity, $S P$ is the stock price and $S O$ is the shares outstanding.

Methods 1-6: Valuation of Public Traded Companies

Method 1: Using the Stock Price as the Basis of Valuation

Company	Symbol	Stock Price $2 / 4 / 2021$	Stocks Outstanding (\$000)	Equity Value (\$000)	$\begin{gathered} \hline \text { Debt (ST\<) } \\ (\$ 000) \\ 9 / 30 / 2021 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Cash } \\ \text { (\$000) } \\ 9 / 30 / 2021 \\ \hline \end{gathered}$	Enterprise Value (\$000)
Hyatt	H	\$ 93.12	109,950	10,238,544	3,348,000	2,418,000	11,168,544

Methods 1-6: Valuation of Public Traded Companies

Method 2: Intrinsic Value and CAPM
The expected return is calculated by applying the capital asset pricing model (CAPM):

$$
\mathrm{E}_{\mathrm{r}}=\mathrm{Rf}_{\mathrm{r}}+\beta\left(\mathrm{M}_{\mathrm{r}}-\mathrm{Rf}_{\mathrm{r}}\right)
$$

where E_{r} is the expected return, $R f_{r}$ is the risk-free rate, β is the beta of the company that is analyzed, and M_{r} is market return.

The formula for today's intrinsic value is

$$
\mathrm{v}_{0}=\frac{\mathrm{D}_{1}+\rho_{1}}{1+\mathrm{k}}
$$

where D_{1} is the dividend expected to receive within a year, P_{1} is the expected stock price a year from now, and k is the discount rate or expected rate of return.

Methods 1-6: Valuation of Public Traded Companies

Method 2: Intrinsic Value and CAPM

```
METHOD #2- Intrinsic Value
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Using CAPM \(=\mathbf{k}=\mathbf{R f}+(\) Beta \(*\) Premium )} & \multicolumn{3}{|l|}{Intrinsic Value = V0 \(=[E(\mathrm{D} 1)+\mathrm{E}(\mathrm{P} 1)] /(1+\mathrm{k})\)} \\
\hline Risk Free = & 1.90\% & D1= & \$1.76 & Pre-covid \\
\hline Beta = & 1.48x & & & \\
\hline Market Premium= & 5.50\% & \(\operatorname{Exp}(\mathrm{P} 1)=\) & \$96.00 & (Avg Target by Analysts for 9/22) \\
\hline Market Return (Rf + Premium)= & 7.40\% & k= & 10.02\% & \\
\hline Expected Equity Return using CA & 10.02\% & Stock Val= & 88.85 & \\
\hline
\end{tabular}
```


Methods 1-6: Valuation of Public Traded Companies

Method 3: Dividend Discount Model (DDM)

To calculate such value using the DDM method, the analyst needs the expected price of the stock a year from the date of the analysis, the expected dividend per share paid within the year, and a discount rate, which derived using the capital asset pricing model (CAPM).

$$
\text { - } \mathrm{V}=\frac{\mathrm{D} 1}{\mathrm{k}-\mathrm{g}}
$$

where D_{1} is the expected dividend, k is the discount rate, and g is the expected growth rate.

Traded Companies

Method 3: Dividend Discount Model (DDM)

METHOD \#3- Dividend Discount Model (DDM)

Constant-Growth DDM (Gordon Model) V0 $=$ D1 $/(\mathbf{k}-\mathrm{g})$	
D1 $=$	$\$ 1.76$
Expected Equity Return $(\mathrm{k})=$	10.02%
Expected Growth $(\mathrm{g})=$	$\mathbf{7 . 5 0 \%}$
Stock Val $=\$ \mathbf{\$ 4 . 9 5}$	

Expected HPR		1) -	/ PO
Dividend (d1)		\$1.76	Pre-covid
P1 = P0+D		\$94.88	
PO	\$	93.12	
Exp. HPR=		3.78\%	

Traded Companies

Method 5: Using Comparable Acquisition EBITDA Multiples

METHOD \#5 - Using Averge EBITDA Transaction Multiples (M\&A Comparable Method)

Target	Acquirer		Acquisition Price /Share		Shares Outstandin g		Value)		Total Net Debt (\$mm)		$\begin{aligned} & \text { orise } \\ & \text { (EV) } \end{aligned}$		(last ed)	EBITDA Multiple
Extended Stay America	Blackstone Group		\$	19.50	177,560,000	\$	3,462	\$	2,303	\$	5,766	\$	356	16.18x
Starwood Hotels	Marriott Hotels		\$	72.08	154,000,000	\$	11,100	\$	1,090	\$	12,190	\$	980	12.44x
Hilton Hotels	Blackstone Group		\$	47.50	390,400,000	\$	18,544	\$	6,180	\$	24,724	\$	1,680	14.72x
Four Seasons*	Kingtom Hotels Int'1		\$	82.00	33,078,000	\$	2,712	\$	279	\$	2,991	\$	94	31.90x
Fairmont/Rafles	Kingtom Hotels Int'1		\$	45.00	73,335,000	\$	3,300	\$	124	\$	3,424	\$	187	18.29x
Hilton International	Hilton Hotels Corp.					\$	5,578	\$	\$ -	\$	5,578	\$	504	11.07x
Starwood Hotels	Host Marriott									\$	4,096	\$	315	13.00x
La-Quinta Corp	Blackstone Group		\$	12.22	203,000,000	\$	2,481	\$	926	\$	3,406	\$	230	14.83x
Wynham Int'	Blackstone Group		\$	1.15	172,053,000	\$	198	\$	2,682	\$	2,880	\$	275	10.47x
John Q. Hammons Hotels	JQH Acquisition LLC		\$	24.00	19,583,000	\$	470	\$	765	\$	1,235	\$	123	10.04x
Societe du Louvre	Starwood Capital									\$	1,029	\$	91	11.30x
Intercontinental Hotels	LRG									\$	981	\$	107	9.20 x
Boca Resorts	Blackstone Group		\$	24.00	40,284,000	\$	967	\$	217	\$	1,184	\$	90	13.15x
Prime Hospitality	Blackstone Group		\$	12.25	44,808,000	\$	549	\$	244	\$	792	\$	55	14.38x
Extended Stay	Blackstone Group		\$	19.93	95,077,000	\$	1,895	\$	1,232	\$	3,126	\$	225	13.90x
														14.32x
Haytt's Enteprise Value	7,963,750 S	Stock Val=	\$	63.97					Using 2019 EBIT	DA	d Adj)=		6,000	

Method 6: DCF Valuation Analysis

To value the company using the DCF method the analyst needs to derive the following four items:

- Setting up a stream of cash flows
- Identifying an exit year
- Calculating the value at exit year (terminal value)
- Using the appropriate discount rate to value the present value of the firm

Method 6: DCF Valuation Analysis

	HISTORICAL										PROJECTED					
	Dec 31	Sep 31	Dec 31													
(\$000's)	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2021	2022	2023	2024	2025	2026
Total Revenue	3,949,000	4,184,000	4,415,000	4,328,000	4,429,000	4,685,000	4,454,000	5,020,000	2,066,000	2,376,000	2,685,800	3,357,250	4,028,700	4,633,005	5,096,306	5,605,936
Revenue Growth		6.0\%	5.5\%	-2.0\%	2.3\%	5.8\%	-4.9\%	12.7\%	-58.8\%	15.0\%	13.0\%	25.0\%	20.0\%	15.0\%	10.0\%	10.0\%
Cost of Revenue	3,121,000	3,283,000	3,433,000	3,377,000	3,473,000	3,638,000	3,475,000	4,077,000	2,067,000	2,155,000	2,435,984	2,637,895	3,165,474	3,640,295	4,004,324	4,404,757
Gross Profit	828,000	901,000	982,000	951,000	956,000	1,047,000	979,000	943,000	$(1,000)$	221,000	249,816	719,355	863,226	992,710	1,091,981	1,201,179
Gross profit	21.0\%	21.5\%	22.2\%	22.0\%	21.6\%	22.3\%	22.0\%	18.8\%	0.0\%	9.3\%	9.3\%	21.4\%	21.4\%	21.4\%	21.4\%	21.4\%
Total Operating Expenses	669,000	668,000	703,000	628,000	657,000	745,000	647,000	746,000	631,000	650,000	416,123	520,154	624,185	717,813	789,594	868,554
EBIT (Operating Income or Loss)	159,000	233,000	279,000	323,000	299,000	302,000	332,000	197,000	$(632,000)$	$(429,000)$	$(166,308)$	199,201	239,041	274,897	302,387	332,626
Interest Expense	70,000	65,000	71,000	68,000	76,000	80,000	76,000	75,000	128,000	164,000						
EBT \& other Income/Expenses	89,000	168,000	208,000	255,000	223,000	222,000	256,000	122,000	$(760,000)$	$(593,000)$						
Other Income/Expenses Net	$(6,000)$	$(153,000)$	$(317,000)$	61,000	$(66,000)$	$(351,000)$	$(695,000)$	$(884,000)$	200,000	$(467,000)$						
EBT	$(960,000)$	1,006,000	951,000	573,000	289,000	573,000	951,000	321,000	$(960,000)$	$(126,000)$						
Income Tax Expense	8,000	116,000	179,000	70,000	85,000	323,000	182,000	240,000	$(257,000)$	270,000						
Net Income	$(703,000)$	766,000	769,000	250,000	204,000	250,000	769,000	205,000	$(703,000)$	$(396,000)$						
Depreciation	353,000	345,000	354,000	320,000	342,000	366,000	327,000	359,000	310,000	296,000	210,243	262,804	315,365	362,669	398,936	438,830
Working Capital	$(67,000)$	$(31,000)$	24,000	25,000	$(32,000)$	126,000	$(79,000)$	$(8,000)$	$(404,000)$	241,000	$(4,309)$	$(5,386)$	$(6,464)$	$(7,433)$	$(8,176)$	$(8,994)$
Capital Expenditure	$(301,000)$	$(232,000)$	$(253,000)$	$(269,000)$	$(211,000)$	$(298,000)$	$(297,000)$	$(369,000)$	$(122,000)$	$(83,000)$	$(168,724)$	$(210,904)$	$(253,085)$	$(291,048)$	$(320,153)$	$(352,168)$
Current Portion of Long Term Debt	-	-	-	-	-	-		11,000	260,000	10,000						
Long Term Debt	2,018,000	2,263,000	2,333,000	2,068,000	2,497,000	2,590,000	2,409,000	2,842,000	4,224,000	3,338,000						

Method 6: DCF Valuation Analysis

To value the company using the DCF method the analyst needs to derive the following four items:

- Using the appropriate discount rate to value the present value of the firm
- WACC for Firm Value
- CAPM for Equity Value

Cost of Equity Calc	
Risk Free Rate (5 year)	1.90%
Premium based on MC $=$	5.50%
Hyatt Beta $=$	1.48 x
Expected Equity Return $=$	10.02%

WACC Calc	Amount	\% Cap	RoR	AT RoR	WACC
Total Debt	$3,348,000$	24.6%	4.188%	3.27%	0.80%
MV Equity	$10,238,544$	75.4%	10.025%	10.02%	7.55%
	$13,586,544$	100.0%			8.36%

Interest Calculation	
Avg Debt	$3,916,000$
Interest	164,000
Rate	4.19%

Method 7: Using the Leveraged Buyout Model (LBO) Method

While the DCF analysis is used for determining today's value of the company based on future cash flows, the value of the company using this LBO method is determined based on investor expectation, which means return determines the acquisition price of the firm.

- Building the Transactions Sources and Uses
- Setting up the Debt Schedules
- Calculating the Expected Equity Return
- Running Projections
- Determining the Terminal Value
- Determining the Value of the Firm

Methods 1-6 - Summary:

Putting All the Values Together

ENTERPRISE VALUATION ANALYSIS									
	$\begin{aligned} & \text { EV } \\ & \text { (000's) } \end{aligned}$	$\begin{gathered} \text { Debt } \\ \text { (000's) } \end{gathered}$	$\begin{gathered} \text { Cash } \\ \text { (000's) } \end{gathered}$	Eq Value (000's)	Shares Outs (000's)			Recommend	(-10\%/+10\%)
METHOD \#1 - Market Value / Using the Stock Prici 11,168,544		3,348,000	2,418,000	10,238,544	109,950	\$	93.12		
METHOD \#2- Intrinsic Value									
	10,699,380	3,348,000	2,418,000	9,769,380	109,950	\$	88.85	Sell	-4.58\%
METHOD \#3- Dividend Discount Model (DDM)	9,170,235	3,348,000	2,418,000	8,240,235	109,950	\$	74.95	Sell	-19.52\%
METHOD \#4-Average EBITDA Industry Trading 1	10,912,445	3,348,000	2,418,000	9,982,445	109,950	\$	90.79	Sell	-2.50\%
METHOD \#5 - Using Averge EBITDA Transaction N	7,963,750	3,348,000	2,418,000	7,033,750	109,950	\$	63.97	Sell	-31.30\%
METHOD \#6- Discount Cash Flow Valuation Anal)	8,717,349	3,348,000	2,418,000	7,787,349	109,950	\$	70.83	Sell	-23.94\%
Average of other methods									
	9,492,632			8,562,632		\$	77.88	Sell	-16.37\%

Valuation of Private Companies

Applying methods 6-8

Method 6: Discount Cash Flow Method (DCF)

One of the most effective ways to value a private company is to dive into the company's projections and change the assumptions based on the investor's view of how the revenue will grow and at what cost.

Since there is no stock price that trades, which gives the investor a direct indication of what the company is worth (market value), an important method used by professionals is the discount cash flow (DCF) method, which measures the company's intrinsic value.

The conduction of this method is to calculate the first the equity cash flows, identify the exit year, estimate the terminal value in the exit year, and use the expected equity return as the discount rate.

Valuation Analysis - Celerity Technology Inc

Method 7: Leveraged Buyout (LBO) Method for Private Companies

Firms

Option Pricing Model Framework

- In option pricing and specifically in call options the payoff formula or intrinsic value of the option is

Option payoff $=\operatorname{Max}(0, S-X)$
where S is the stock price and X is the exercise price.

- To calculate the enterprise value
$\mathrm{EV}=\mathrm{E}+\mathrm{D}-\mathrm{C}$ or $\mathrm{EV}=\mathrm{E}+$ net D
where $E V$ is the enterprise value of the firm, E is the equity value, D is the debt and C is cash. The net D is referred to as debt minus cash implied that the current debt could be paid with cash on hand.
- Solving for equity:

$$
E=E V-\operatorname{net} D
$$

where E is the equity, $E V$ is the enterprise value and net D is the net debt.

Firms

Option Pricing Model Framework

The Black-Scholes formula is

$$
\text { C option payoff }=S e^{-\delta . t} . \mathrm{N}(d 1)-X e^{-\mathrm{i} . t} \cdot \mathrm{~N}(\mathrm{~d} 2)
$$

where S is the stock price, δ is the dividend yield, t is time until expiration, X is the option exercise price, i is the risk-free interest rate, and N is the normal distribution.

$$
\mathbf{d} 1=\frac{\left[\ln \left(\frac{\mathrm{S}}{\mathrm{x}}\right)+\left(\mathrm{i}-\delta+\frac{\sigma^{2}}{2}\right) \cdot \mathrm{t}\right]}{\sigma \sqrt{\mathrm{t}}} \text { and } \mathbf{d} 2=\mathbf{d} \mathbf{1}-\sigma \sqrt{\mathbf{t}}
$$

where S is the current stock price, X is the contractual exercise price, i is the risk-free interest rate, δ is the dividend yield, σ is the standard deviation, and t is time to expiration.

ıviculiuu O. vaiualiuli U1 Lislicis Firms

Input:

- $S=$ Value of the firm = \$1 billion
- $X=$ Exercise price $=$ debt value $=\$ 1,200$ million
- $\sigma=$ Standard deviation of the asset $=20 \%$
- $t=$ Time $=$ term of the bond $=5$ years
- $\mathrm{i}=$ Risk-free rate $=3 \%$
- $\delta=$ Dividends $=$ cash flow paying the equity $=\$ 0$
- $\mathrm{C}=$ Equity value $=\mathrm{E}=$?

Formulas and output:

Using the formula to determine the deviations d 1 and d 2 :
$\boldsymbol{d} 1=\frac{\left[\ln \left(\frac{S}{x}\right)+\left(i-\delta+\frac{\sigma^{2}}{2}\right) \cdot t\right]}{\sigma \sqrt{ } t}$ and $d 2=d 1-\sigma \sqrt{ } \boldsymbol{t}$
$d 1=.7671$ and $N(d 1)=.7785$
$d 2=.5678$ and $N(d 2)=.7149$
Using the Black Sholes formula:

$$
\begin{gathered}
C=S e^{-\delta \cdot t} \cdot N(d 1)-X e^{-i . t} \cdot N(d 2) \\
C=\$ 152.0 \text { million }
\end{gathered}
$$

Valuation Analysis of Distress Company - AB Air Co.

AB Air Co., an airline company that entered bankruptcy in 1990. At the time of the filing, the debt outstanding, representing the exercise price X, was at $\$ 600$ million with a remaining life or duration of 5 years. To establish the value of equity, the enterprise value needs to be calculated. The management put together a business plan including 5 years of projections. In the first year, the company is planning to spend more money, representing restructuring costs and downsizing. Based on the 5 years' projection, the equity analyst could calculate the present value of the future cash flows, an estimated terminal value, and an assumed discount rate using the weighted average cost of capital of 10.5%.

- The DCF analysis yields an enterprise value or the value of S of $\$ 934$ million. Obviously with $S=\$ 934$ million and $X=\$ 600$ million the equity is in the money. Using the Black-Scholes option pricing model the equity or the call option C is calculated at $\$ 575$ million after taking into consideration the combined variance for both debt and equity using the following formula:

$$
\sigma s b^{2}=s^{2} \cdot \sigma s^{2}+b^{2} \cdot \sigma b^{2}+2(W s . W b \cdot \sigma s \cdot \sigma b) \cdot \rho
$$

where $\sigma s b^{2}$ is the combined variance of bonds and stocks, $W s$ is the percentage of stocks to total capitalization, σs^{2} is the stock price variance prior to bankruptcy, $W b$ is the bond outstanding as percentage of total capitalization, σb^{2} is the bond price variance prior to bankruptcy, and ρ is the correlation between the stock and bond prices.

- AB Air Co.

CASE STUDY: AB Air Co.

File for Bankruptcy 1990

DEBTASSUMPTIONS		VALUE ASSUMPTIONS (Pre-bankrupcy)			
Debt Outstanding $=$ N 600	600	Stock Montly Var. (1985-1990)=			$\begin{aligned} & 3.15 \% \\ & 2.16 \% \end{aligned}$
Weighted Average Duration= 5	years				
Weighted Average maturity $=$ 8.7	ars	crelation	ween Stock	Bond	$\begin{array}{r} 2.16 \% \\ 0.25 \end{array}$
WACC= 10.0%		Debt proportion (1987-1991) =			88.30\%
TaxRate = 36.0\%					
Discount Cash Flow Analysis (\$ millions)	1991	1992	1993	1994	1995
Revenue	1,250.0	1,137.5	1,114.8	1,159.3	1,205.7
cogs	(980.0)	(810.0)	(668.0)	(695.6)	(723.4)
Oper. Exp.	(720.0)	(210.0)	(205.8)	(214.0)	(222.6)
EBit	(450.0)	117.5	241.0	249.7	259.7
Ebit (t)	(162.0)	42.3	86.8	89.9	93.5
EBIT (i-t)	(288.0)	75.2	154.2	159.8	166.2
Less Maintenance Capex (offset by Depreciation)	-	-	-	-	-
Less W/C (assumiung \$0)					
Cash Flow	(288.0)	75.2	154.2	59.8	166.2
Terminal Value assumption 5.0x					1,298.5
EV (PV) of the firm \$934.8	(288.0)	75.2	154.2	159.8	1,464.7
Step 1 - Find the annualized in stock and bond prices:					
Annualized Variance in Stock Price onz $=$	0.37812	nual)		Dev. $=$. 6149146
Annualized Variance in Bond Price $\mathbf{o n 2}^{\wedge}=$	0.2592	nual)		Dev.=	5091169

$\begin{array}{ll}\text { Annualized Variance in Bond Price o }{ }^{\wedge} \mathrm{A}= & 0.37812 \text { (annual) }\end{array}$
St. Dev. $=0.5091169$

Step 2 - Find the annualized variance in firm value

$\left(w e^{\wedge} 2 \times \sigma e^{\wedge} 2\right)+\left(w b^{\wedge} 2 \times \sigma b^{\wedge} 2\right)+2$ (we \times wd \times ped \times de $\left.\times \sigma d\right)$. C			
We= $\mathbf{W d =}$	11.70% 88.30%	$\mathrm{c}=$	0.25

The five-year bond rate (corresponding to the weighted average duration of 5.1 years) is 6.0%
Stet 3 - Find the value of call based upon the following parameters of equity as a call option
Value of the underlying asset $=S=$ Value of the firm
Exercise Price $=x=$ Face Value of outstanding debt
Life of the option $=t=$ Weighted average duration of debt= Riskless Rate $=1=T$-Bond for option life $=$

$$
\begin{gathered}
\$ 934.8 \\
\$ 600.0 \\
5 \text { years } \\
0.2113143 \\
6.00 \%
\end{gathered}
$$

$$
\begin{array}{ll}
d 1=1.23721 & N(d 1)=0.8919954 \\
d 2=0.209313 & N(d 2)=0.5828981
\end{array}
$$

